Numerical solution of nonlinear Volterra-Fredholm integro-differential equations

被引:37
作者
Darania, P. [1 ]
Ivaz, K. [1 ]
机构
[1] Univ Tabriz, Dept Math & Comp Sci, Tabriz, Iran
关键词
Taylor polynomials and series; Volterra and Fredholm integral equation; integro-differential equations;
D O I
10.1016/j.camwa.2008.03.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present an efficient analytical and numerical procedure for solving the high-order nonlinear Volterra-Fredholm integro-differential equations. Our method depends mainly on a Taylor expansion approach. This method transforms the integro-differential equation and the given conditions into the matrix equation. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2197 / 2209
页数:13
相关论文
共 13 条
[1]   Linearization method for solving nonlinear integral equations [J].
Darania, P. ;
Ebadian, A. ;
Oskoi, A. V. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006 :1-10
[2]   On the RF-pair operations for the exact solution of some classes of nonlinear Volterra integral equations [J].
Darania, P. ;
Hadizadeh, M. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006
[3]   A method for the numerical solution of the integro-differential equations [J].
Darania, P. ;
Ebadian, Ali .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) :657-668
[4]   A HERMITE-TYPE COLLOCATION METHOD FOR THE SOLUTION OF AN INTEGRAL-EQUATION WITH A CERTAIN WEAKLY SINGULAR KERNEL [J].
DIOGO, T ;
MCKEE, S ;
TANG, T .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (04) :595-605
[5]  
Kanwal R.P., 1989, Int. J. Math. Educ. Sci. Technol., V20, P411
[6]   CONTINUOUS-TIME COLLOCATION METHODS FOR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS [J].
KAUTHEN, JP .
NUMERISCHE MATHEMATIK, 1989, 56 (05) :409-424
[7]   Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations [J].
Maleknejad, K ;
Mahmoudi, Y .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) :641-653
[8]  
Sezer M, 1994, International Journal of Mathematical Education in Science and Technology, V25, P625, DOI [10.1080/0020739940250501, DOI 10.1080/0020739940250501]
[9]  
Singh R. P., 2010, Int. J. Contemp. Math. Sci. 1, V1, P83
[10]   PRODUCT INTEGRATION METHODS FOR AN INTEGRAL-EQUATION WITH LOGARITHMIC SINGULAR KERNEL [J].
TANG, T ;
MCKEE, S ;
DIOGO, T .
APPLIED NUMERICAL MATHEMATICS, 1992, 9 (3-5) :259-266