High Temperature Unclamped Inductive Switching Mode Evaluation of SiC JFET

被引:15
作者
Pushpakaran, Bejoy N. [1 ]
Hinojosa, Miguel [1 ]
Bayne, Stephen B. [1 ]
Veliadis, Victor [2 ]
Urciuoli, Damian [3 ]
El-Hinnawy, Nabil [2 ]
Borodulin, Pavel [2 ]
Gupta, Shalini [2 ]
Scozzie, Charles [3 ]
机构
[1] Texas Tech Univ, Dept Elect & Comp Engn, Lubbock, TX 79409 USA
[2] Northrop Grumman Elect Syst, Linthicum, MD 21090 USA
[3] USA, Res Lab, Adelphi, MD 20783 USA
关键词
1200; V; high temperature; junction field-effect transistor (JFET); pulsed testing; silicon carbide (SiC); triode breakdown; unclamped inductive switching (UIS); PERFORMANCE;
D O I
10.1109/LED.2013.2247020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Silicon carbide (SiC) unipolar transistors are an efficient choice in the design of high temperature 1200 V switching power supplies and dc-dc converters. To reduce the form factor and increase the power density of the circuit, the switching frequency must be high. This intensifies the negative impact of parasitic inductance and results in high voltage spikes that can drive a switching device into breakdown, followed by rapid destruction. To study the device performance under unclamped inductive switching (UIS) conditions, a normally-ON 1200 V/13-A SiC junction field-effect transistor (JFET) is driven into punch through breakdown using a single pulse. The testing is performed using an UIS setup, in which energy initially stored in an inductor is discharged through the JFET. The testing comprises of 90 single pulses each at 25 degrees C and 100 degrees C case temperatures for different gate voltages and drain current values. The peak energy and power dissipated in the JFET are 621 mJ and 16 kW, respectively, at the rated 1200 V blocking voltage and 13-A drain current. The JFET triode breakdown characteristics are unchanged after 180 single-pulse switching events indicating the robust nature of the device under extreme breakdown conditions. In addition, the 621 mJ peak UIS energy and its corresponding 8871 mJ/cm(2) density dissipated in the JFET are the highest reported for any SiC power device.
引用
收藏
页码:526 / 528
页数:3
相关论文
共 11 条
[1]  
Friedrichs P, 2006, APPL POWER ELECT CO, P1677
[2]   Hard-Switch Stressing of Vertical-Channel Implanted-Gate SiC JFETs [J].
Lawson, K. ;
Alvarez, G. ;
Bayne, S. B. ;
Veliadis, V. ;
Ha, H. C. ;
Urciuoli, D. ;
El-Hinnawy, N. ;
Borodulin, P. ;
Scozzie, C. .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (01) :86-88
[3]   Design, process, and performance of all-epitaxial normally-off SiC JFETs [J].
Malhan, Rajesh K. ;
Bakowski, Mietek ;
Takeuchi, Yuuichi ;
Sugiyama, Naohiro ;
Schoner, Adolf .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (10) :2308-2328
[4]  
Mihaila A, 2000, 2000 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, CAS 2000 PROCEEDINGS, P185, DOI 10.1109/SMICND.2000.890214
[5]   Performance, Reliability, and Robustness of 4H-SiC Power DMOSFETs [J].
Ryu, S. ;
Hull, B. ;
Dhar, S. ;
Cheng, L. ;
Zhang, Q. ;
Richmond, J. ;
Das, M. ;
Agarwal, A. ;
Palmour, J. ;
Lelis, A. ;
Geil, B. ;
Scozzie, C. .
SILICON CARBIDE AND RELATED MATERIALS 2009, PTS 1 AND 2, 2010, 645-648 :969-+
[6]   Characterization of the Stability of Current Gain and Avalanche-Mode Operation of 4H-SiC BJTs [J].
Sundaresan, Siddarth G. ;
Soe, Aye-Mya ;
Jeliazkov, Stoyan ;
Singh, Ranbir .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (10) :2795-2802
[7]  
Urciuoli DP, 2011, APPL POWER ELECT CO, P354, DOI 10.1109/APEC.2011.5744620
[8]   A 1680-V (at 1 mA/cm2) 54-a (at 780 W/cm2) normally ON4H-SiC JFET with 0.143-cm2 active area [J].
Vehadis, V. ;
McNutt, T. ;
Snook, M. ;
Hearne, H. ;
Potyraj, P. ;
Scozzie, C. .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (10) :1132-1134
[9]   A 9-kV Normally-ON Vertical-Channel SiC JFET for Unipolar Operation [J].
Veliadis, V. ;
Stewart, E. J. ;
Hearne, H. ;
Snook, M. ;
Lelis, A. ;
Scozzie, C. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (05) :470-472
[10]   A 2055-V (at 0.7 mA/cm2) 24-A (at 706 W/cm2) Normally On 4H-SiC JFET With 6.8-mm2 Active Area and Blocking-Voltage Capability Reaching the Material Limit [J].
Veliadis, V. ;
Snook, M. ;
McNutt, T. ;
Hearne, H. ;
Potyraj, P. ;
Lelis, Aivars ;
Scozzie, C. .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (12) :1325-1327