On the Bohr inequality for the Cesaro operator

被引:29
作者
Kayumov, Ilgiz R. [1 ]
Khammatova, Diana M. [1 ]
Ponnusamy, Saminathan [2 ]
机构
[1] Kazan Fed Univ, Kazan 420008, Russia
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
基金
俄罗斯科学基金会;
关键词
D O I
10.5802/crmath.80
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate an analog of Bohr's results for the Cesaro operator acting on the space of holomorphic functions defined on the unit disk. The asymptotical behaviour of the corresponding Bohr sum is also estimated.
引用
收藏
页码:615 / 620
页数:6
相关论文
共 15 条
[1]  
Ali RM., 2016, PROGR APPROXIMATION, P265
[2]   A note on Bohr's phenomenon for power series [J].
Ali, Rosihan M. ;
Barnard, Roger W. ;
Solynin, Alexander Yu. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :154-167
[3]  
[Anonymous], 1951, Math. Nachr., DOI DOI 10.1002/MANA.3210040124
[4]  
Bohr H, 1914, P LOND MATH SOC, V13, P1
[5]  
Bombieri E, 2004, INT MATH RES NOTICES, V2004, P4307
[6]  
Bombieri E., 1962, Boll. Un. Mat. Ital., V17, P276
[7]   BANACH-ALGEBRAS SATISFYING THE NON-UNITAL VON-NEUMANN-INEQUALITY [J].
DIXON, PG .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :359-362
[8]  
Djakov PB., 2000, J ANAL-INDIA, V8, P65
[9]  
Garcia S.R., 2018, Finite Blaschke Products and Their Connections
[10]   Some properties of fractional integrals II [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1932, 34 :403-439