Three-Dimensional Modeling for the Internal Shorting Caused Thermal Runaway Process in 20Ah Lithium-Ion Battery

被引:13
作者
Liu, Xinyu [1 ]
Zhou, Zhifu [2 ]
Wu, Weitao [3 ]
Gao, Linsong [1 ]
Li, Yang [1 ]
Huang, Heng [1 ]
Huang, Zheng [1 ]
Li, Yubai [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116023, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; thermal runaway; internal short circuit; numerical simulation; heat dissipation; SHORT-CIRCUIT; LI-ION; BEHAVIOR; CELL; TEMPERATURE; PROPAGATION; SIMULATION; MECHANISM;
D O I
10.3390/en15196868
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Better understanding of how internal short circuit causes thermal runaway will benefit the engineering for safer lithium-ion batteries. In this study, three-dimensional (3D) numerical simulations of a 20Ah lithium battery under internal shorting condition are performed. The effects of internal short circuit area, resistance, penetration depth, convective heat transfer coefficient and internal short circuit position, on the thermal runaway are investigated with the simulations in this work. This study demonstrates that the average cell temperature is only weakly affected by the internal short circuit area, penetration depth, and position. On the other hand, the internal short circuit resistance and the convective heat transfer coefficient have large impacts on the thermal runaway propagation in the lithium-ion battery. A high convective heat transfer coefficient can effectively suppress the thermal runaway propagation. However, such a high convective heat transfer coefficient is hard to achieve at the cell surface.
引用
收藏
页数:25
相关论文
共 52 条
[1]   Effect of mechanical extrusion force on thermal runaway of lithium-ion batteries caused by flat heating [J].
Bai, Jinlong ;
Wang, Zhirong ;
Gao, Tianfeng ;
Bai, Wei ;
Wang, Junling .
JOURNAL OF POWER SOURCES, 2021, 507
[2]   A review on lithium-ion battery ageing mechanisms and estimations for automotive applications [J].
Barre, Anthony ;
Deguilhem, Benjamin ;
Grolleau, Sebastien ;
Gerard, Mathias ;
Suard, Frederic ;
Riu, Delphine .
JOURNAL OF POWER SOURCES, 2013, 241 :680-689
[3]  
Busch C., 2021, CHINAS CARBON NEUTRA
[4]   Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells [J].
Cai, Wei ;
Wang, Hsin ;
Maleki, Hossein ;
Howard, Jason ;
Lara-Curzio, Edgar .
JOURNAL OF POWER SOURCES, 2011, 196 (18) :7779-7783
[5]   A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards [J].
Chen, Yuqing ;
Kang, Yuqiong ;
Zhao, Yun ;
Wang, Li ;
Liu, Jilei ;
Li, Yanxi ;
Liang, Zheng ;
He, Xiangming ;
Li, Xing ;
Tavajohi, Naser ;
Li, Baohua .
JOURNAL OF ENERGY CHEMISTRY, 2021, 59 :83-99
[6]   An electrochemical modeling of lithium-ion battery nail penetration [J].
Chiu, Kuan-Cheng ;
Lin, Chi-Hao ;
Yeh, Sheng-Fa ;
Lin, Yu-Han ;
Chen, Kuo-Ching .
JOURNAL OF POWER SOURCES, 2014, 251 :254-263
[7]   Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway [J].
Coman, Paul T. ;
Darcy, Eric C. ;
Veje, Christian T. ;
White, Ralph E. .
APPLIED ENERGY, 2017, 203 :189-200
[8]  
Dan Y., 2021, THESIS XIAN U ARCHIT, DOI [10.27393/d.cnki.gxazu.2021.000064, DOI 10.27393/D.CNKI.GXAZU.2021.000064]
[9]   Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model [J].
Fang, Weifeng ;
Ramadass, Premanand ;
Zhang, Zhengming .
JOURNAL OF POWER SOURCES, 2014, 248 :1090-1098
[10]   A 3D thermal runaway propagation model for a large format lithium ion battery module [J].
Feng, Xuning ;
Lu, Languang ;
Ouyang, Minggao ;
Li, Jiangqiu ;
He, Xiangming .
ENERGY, 2016, 115 :194-208