Large magnetic entropy change and relative cooling power in the rare earth intermetallic HoCo0.25Ni1.75 compound

被引:7
作者
Mondal, Rajib [1 ]
Nirmala, R. [1 ]
Chelvane, J. Arout [2 ]
Malik, S. K. [3 ]
机构
[1] Indian Inst Technol, Dept Phys, Madras 600036, Tamil Nadu, India
[2] Def Met Res Lab, Hyderabad 500058, Andhra Pradesh, India
[3] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59082970 Natal, RN, Brazil
关键词
Rare earth intermetallics and alloys; Magnetocaloric effect; MAGNETOCALORIC PROPERTIES; TRANSITION; TEMPERATURE; DEPENDENCE; CHARACTER; TB; GD; HO; DY;
D O I
10.1016/j.jmmm.2015.05.089
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic and magnetocaloric properties of cubic Laves phase rare earth intermetallic HoCo0.25Ni1.75 compound have been investigated. Magnetization measurements show that HoCo0.25Ni1.75 orders ferromagnetically at 22 K (T-c). The magnetization vs field (M-mu H-0) isotherm at 2 K shows negligible hysteresis. The isothermal magnetic entropy change (Delta S-m) is calculated from the measured M-mu H-0 data near T-c. The maximum value of Delta S-m, Delta S-m(max), is about -18.9 J/kg-K at T-c for a field change of 5 T with a refrigerant capacity of 572 J/kg. The material exhibits large Delta S-m(max) of -9.4 J/kg-K even for a low field change of 2 T. Universal master curve is constructed by rescaling Delta S-m vs T curves for various fields to confirm the second order nature of the magnetic transition at T-c. Large Delta S-m(max) value, wide temperature span of cooling and high relative cooling power make HoCo0.25Ni1.75 a potential magnetic refrigerant for low temperature applications such as hydrogen liquefaction. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 379
页数:4
相关论文
共 33 条
[1]  
Arrott A., 1957, Phys. Rev, V108, P6
[2]   Magnetism and magnetocaloric effect in multicomponent Laves-phase compounds: Study and comparative analysis [J].
Cwik, J. .
JOURNAL OF SOLID STATE CHEMISTRY, 2014, 209 :13-22
[3]   Effect of Sc on magnetic properties and heat capacity of R1-xScxNi2 (R = Gd, Tb, Dy, Ho) solid solutions: Comparative analysis [J].
Cwik, J. ;
Nenkov, K. ;
Palewski, T. .
INTERMETALLICS, 2013, 32 :109-118
[4]   Magnetic properties and magnetocaloric effects in R3Ni2 (R = Ho and Er) compounds [J].
Dong, Q. Y. ;
Chen, J. ;
Shen, J. ;
Sun, J. R. ;
Shen, B. G. .
APPLIED PHYSICS LETTERS, 2011, 99 (13)
[5]   Metamagnetism, giant magnetoresistance and magnetocaloric effects in RCO2-based compounds in the vicinity of the Curie temperature [J].
Duc, NH ;
Anh, DTK ;
Brommer, PE .
PHYSICA B-CONDENSED MATTER, 2002, 319 (1-4) :1-8
[6]   Field dependence of the magnetocaloric effect in Gd and (Er1-xDyx)Al2:: Does a universal curve exist? [J].
Franco, V. ;
Conde, A. ;
Pecharsky, V. K. ;
Gschneidner, K. A., Jr. .
EPL, 2007, 79 (04)
[7]   The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident? [J].
Franco, V. ;
Conde, A. ;
Kuz'min, M. D. ;
Romero-Enrique, J. M. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
[8]   Field dependence of the magnetocaloric effect in materials with a second order phase transition:: A master curve for the magnetic entropy change [J].
Franco, V. ;
Blazquez, J. S. ;
Conde, A. .
APPLIED PHYSICS LETTERS, 2006, 89 (22)
[9]   Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides -: art. no. 104416 [J].
Fujita, A ;
Fujieda, S ;
Hasegawa, Y ;
Fukamichi, K .
PHYSICAL REVIEW B, 2003, 67 (10)
[10]   Magnetic properties and magnetocaloric effect in TmGa and HoGa single crystals [J].
Gao, Tian ;
Nishimura, Katsuhiko ;
Matsumoto, Takashi ;
Namiki, Takahiro ;
Isikawa, Yosikazu .
SOLID STATE COMMUNICATIONS, 2013, 158 :1-4