Periodic solutions of non-autonomous second order Hamiltonian systems

被引:26
|
作者
Zhang, Xingyong [1 ]
Zhou, Yinggao [1 ]
机构
[1] Cent S Univ, Sch Mat Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
periodic solution; critical point; non-autonomous second-order system; Sobolev's inequality;
D O I
10.1016/j.jmaa.2008.05.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study the existence of periodic solutions for a class of nonautonomous second order Hamiltonian system. Some new existence theorems are obtained by the least action principle. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:929 / 933
页数:5
相关论文
共 50 条
  • [21] HOMOCLINIC SOLUTIONS FOR A CLASS OF SECOND ORDER NON-AUTONOMOUS SYSTEMS
    Yuan, Rong
    Zhang, Ziheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [22] Homoclinic solutions of some second order non-autonomous systems
    Zhang, Ziheng
    Yuan, Rong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) : 5790 - 5798
  • [23] PERIODIC SOLUTIONS FOR NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL SYSTEMS WITH (q,p)-LAPLACIAN
    Li, Chun
    Ou, Zeng-Qi
    Tang, Chun-Lei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [24] Homoclinic solutions for some second order non-autonomous Hamiltonian systems without the globally superquadratic condition
    Zhang, Ziheng
    Yuan, Rong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1809 - 1819
  • [25] PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS HAMILTONIAN SYSTEMS WITH p(t)-LAPLACIAN
    Wang, Zhiyong
    Qian, Zhengya
    MATHEMATICA BOHEMICA, 2024, 149 (02): : 185 - 208
  • [26] Multiple periodic solutions for a class of non-autonomous hamiltonian systems with even-typed potentials
    Yu Tian
    Weigao Ge
    Journal of Dynamical and Control Systems, 2012, 18 : 339 - 354
  • [27] Multiple periodic solutions for a class of non-autonomous hamiltonian systems with even-typed potentials
    Tian, Yu
    Ge, Weigao
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (03) : 339 - 354
  • [28] Periodic solutions of non-autonomous ordinary p-Laplacian systems
    Lv X.
    Lu S.
    Yan P.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 11 - 18
  • [29] Periodic solutions of non-autonomous ordinary p-Laplacian systems
    Lv, Xiang
    Lu, Shiping
    Yan, Ping
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2011, 35 (1-2) : 11 - 18
  • [30] Periodic solutions of second order Hamiltonian systems
    Llibre, Jaume
    Makhlouf, Amar
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (02): : 214 - 221