Periodic solutions of non-autonomous second order Hamiltonian systems

被引:27
作者
Zhang, Xingyong [1 ]
Zhou, Yinggao [1 ]
机构
[1] Cent S Univ, Sch Mat Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
periodic solution; critical point; non-autonomous second-order system; Sobolev's inequality;
D O I
10.1016/j.jmaa.2008.05.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study the existence of periodic solutions for a class of nonautonomous second order Hamiltonian system. Some new existence theorems are obtained by the least action principle. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:929 / 933
页数:5
相关论文
共 8 条
[1]   Periodic solutions for some nonautonomous second-order systems [J].
Ma, J ;
Tang, CL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (02) :482-494
[2]  
Mawhin J., 1989, CRITICAL POINT THEOR
[3]   Existence and multiplicity of periodic solutions for nonautonomous second order systems [J].
Tang, CL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :299-304
[4]   PERIODIC-SOLUTIONS OF NONAUTONOMOUS 2ND-ORDER SYSTEMS WITH GAMMA-QUASISUBADDITIVE POTENTIAL [J].
TANG, CL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (03) :671-675
[5]   Periodic solutions of non-autonomous second order systems [J].
Tang, CL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (02) :465-469
[6]   Periodic solutions of a class of non-autonomous second-order systems [J].
Wu, XP ;
Tang, CL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (02) :227-235
[7]  
YANG RG, 2008, PERIODIC SOLUTIONS S
[8]   Periodic solutions for a class of non-autonomous second order systems [J].
Zhao, FK ;
Wu, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (02) :422-434