Smoothed L-estimation of regression function

被引:5
作者
Cizek, P. [1 ]
Tamine, J. [2 ]
Haerdle, W. [3 ]
机构
[1] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
[2] Univ Aix Marseille 2, GREQAM Vieille Charite, F-13002 Marseille, France
[3] Humboldt Univ, Inst Stat & Okonometrie, D-10178 Berlin, Germany
关键词
D O I
10.1016/j.csda.2008.05.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Nadaraya-Watson nonparametric estimator of regression is known to be highly sensitive to the presence of outliers in data. This sensitivity can be reduced, for example, by using local L-estimates of regression. Whereas the local L-estimation is traditionally done using an empirical conditional distribution function, we propose to use instead a smoothed conditional distribution function. The asymptotic distribution of the proposed estimator is derived under mild beta-mixing conditions, and additionally, we show that the smoothed L-estimation approach provides computational as well as statistical finite-sample improvements. Finally, the proposed method is applied to the modelling of implied volatility. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5154 / 5162
页数:9
相关论文
共 20 条
[1]   Nonparametric estimation of state-price densities implicit in financial asset prices [J].
Ait-Sahalia, Y ;
Lo, AW .
JOURNAL OF FINANCE, 1998, 53 (02) :499-547
[2]  
[Anonymous], 2002, APPL QUANTITATIVE FI
[3]  
Barnett V., 1984, Outliers in Statistical Data, V2nd
[4]  
Benko M, 2005, STATISTICAL TOOLS FINANCE AND INSURANCE, P115, DOI 10.1007/3-540-27395-6_5
[5]  
Boente G., 1994, J. Nonparametr. Statist., V4, P91, DOI [10.1080/10485259408832603, DOI 10.1080/10485259408832603]
[6]   Robust estimation of dimension reduction space [J].
Cizek, P. ;
Haerdle, W. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) :545-555
[7]  
Cízek P, 2004, STAT IND TECHNOL, P59
[8]  
CIZEK P, 2006, 200620 TILB U
[9]  
Davis P, 1984, Methods of Numerical Integration, VSecond
[10]  
Fengler M.R., 2003, Review of Derivatives Research, V6, P179