Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis

被引:282
作者
Augustsson, Per [1 ]
Magnusson, Cecilia [2 ]
Nordin, Maria [1 ]
Lilja, Hans [2 ,3 ,4 ,5 ,6 ,7 ]
Laurell, Thomas [1 ,8 ]
机构
[1] Lund Univ, Dept Measurement Technol & Ind Elect Engn, S-22100 Lund, Sweden
[2] Lund Univ, Skane Univ Hosp, Dept Lab Med, Malmo, Sweden
[3] Mem Sloan Kettering Canc Ctr, Dept Lab Med, New York, NY 10065 USA
[4] Mem Sloan Kettering Canc Ctr, Dept Urol Surg, New York, NY 10065 USA
[5] Mem Sloan Kettering Canc Ctr, Dept Med GU Oncol, New York, NY 10065 USA
[6] Univ Oxford, Nuffield Dept Surg Sci, Oxford, England
[7] Univ Tampere, Inst Biosci & Med Technol, FIN-33101 Tampere, Finland
[8] Dongguk Univ, Dept Biomed Engn, Seoul, South Korea
基金
瑞典研究理事会;
关键词
CIRCULATING TUMOR-CELLS; PERIPHERAL-BLOOD; VIABILITY; PARTICLE; PROGRESSION; ULTRASOUND; SURVIVAL; ASSAY;
D O I
10.1021/ac301723s
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Circulating tumor cells (CTC) are shed in peripheral blood at advanced metastatic stages of solid cancers. Surface-marker-based detection of CTC predicts recurrence and survival in colorectal, breast, and prostate cancer. However, scarcity and variation in size, morphology, expression profile, and antigen exposure impairs reliable detection and characterization of CTC. We have developed a noncontact, label-free microfluidic acoustophoresis method to separate prostate cancer cells from white blood cells (WBC) through forces generated by ultrasonic resonances in microfluidic channels. Implementation of cell prealignment in a temperature-stabilized (+/- 0.5 degrees C) acoustophoresis microchannel dramatically enhanced the discriminatory capacity and enabled the separation of 5 pm microspheres from 7 pm microspheres with 99% purity. Next, we determined the feasibility of employing label-free microfluidic acoustophoresis to discriminate and divert tumor cells from WBCs using erythrocyte-lysed blood from healthy volunteers spiked with tumor cells from three prostate cancer cell-lines (DU145, PC3, LNCaP). For cells fixed with paraformaldehyde, cancer cell recovery ranged from 93.6% to 97.9% with purity ranging from 97.4% to 98.4%. There was no detectable loss of cell viability or cell proliferation subsequent to the exposure of viable tumor cells to acoustophoresis. For nonfixed, viable cells, tumor cell recovery ranged from 72.5% to 93.9% with purity ranging from 79.6% to 99.7%. These data contribute proof-in-principle that label-free microfluidic acoustophoresis can be used to enrich both viable and fixed cancer cells from WBCs with very high recovery and purity.
引用
收藏
页码:7954 / 7962
页数:9
相关论文
共 50 条
[21]   Label-free microfluidic stem cell isolation technologies [J].
Menachery, Anoop ;
Kumawat, Nityanand ;
Qasaimeh, Mohammad .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2017, 89 :1-12
[22]   Label-free cell separation and sorting in microfluidic systems [J].
Gossett, Daniel R. ;
Weaver, Westbrook M. ;
Mach, Albert J. ;
Hur, Soojung Claire ;
Tse, Henry Tat Kwong ;
Lee, Wonhee ;
Amini, Hamed ;
Di Carlo, Dino .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 397 (08) :3249-3267
[23]   A Design of Microfluidic Chip with Quasi-Bessel Beam Waveguide for Scattering Detection of Label-Free Cancer Cells [J].
Lv, Ning ;
Zhang, Lu ;
Jiang, Lili ;
Muhammad, Amir ;
Wang, Huijun ;
Yuan, Li .
CYTOMETRY PART A, 2020, 97 (01) :78-90
[24]   High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells [J].
Lin, Eric ;
Rivera-Baez, Lianette ;
Fouladdel, Shamileh ;
Yoon, Hyeun Joong ;
Guthrie, Stephanie ;
Wieger, Jacob ;
Deol, Yadwinder ;
Keller, Evan ;
Sahai, Vaibhav ;
Simeone, Diane M. ;
Burness, Monika L. ;
Azizi, Ebrahim ;
Wicha, Max S. ;
Nagrath, Sunitha .
CELL SYSTEMS, 2017, 5 (03) :295-+
[25]   Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives [J].
Cima, Igor ;
Yee, Chay Wen ;
Iliescu, Florina S. ;
Phyo, Wai Min ;
Lim, Kiat Hon ;
Iliescu, Ciprian ;
Tan, Min Han .
BIOMICROFLUIDICS, 2013, 7 (01)
[26]   Application of label-free techniques in microfluidic for biomolecules detection and circulating tumor cells analysis [J].
Leung, Chung-Hang ;
Wu, Ke-Jia ;
Li, Guodong ;
Wu, Chun ;
Ko, Chung-Nga ;
Ma, Dik-Lung .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2019, 117 :78-83
[27]   SAW-Based Isolation of Label-Free and Label-Based Rare Cells: A Review of Experimental Investigations [J].
Morteza, Bayareh ;
Zahra, Taheri .
IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2025, 44 (02) :504-517
[28]   Acoustofluidic, Label-Free Separation and Simultaneous Concentration of Rare Tumor Cells from White Blood Cells [J].
Antfolk, Maria ;
Magnusson, Cecilia ;
Augustsson, Per ;
Lija, Hans ;
Laurell, Thomas .
ANALYTICAL CHEMISTRY, 2015, 87 (18) :9322-9328
[29]   ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells [J].
Lee, Yifang ;
Guan, Guofeng ;
Bhagat, Ali Asgar .
CYTOMETRY PART A, 2018, 93A (12) :1251-1254
[30]   Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers [J].
Wang, Yang ;
Luo, Jinping ;
Liu, Juntao ;
Sun, Shuai ;
Xiong, Ying ;
Ma, Yuanyuan ;
Yan, Shi ;
Yang, Yue ;
Yin, Huabing ;
Cai, Xinxia .
BIOSENSORS & BIOELECTRONICS, 2019, 136 (84-90) :84-90