Weighted Topological Clustering for Categorical Data

被引:0
|
作者
Rogovschi, Nicoleta [1 ]
Nadif, Mohamed [1 ]
机构
[1] Paris Descartes Univ, LIPADE, 45 Rue St Peres, F-75006 Paris, France
来源
NEURAL INFORMATION PROCESSING, PT I | 2011年 / 7062卷
关键词
unsupervised learning; mixture models; Self-Organizing Maps; categorical data; SELF-ORGANIZING MAPS; ALGORITHM; MODEL; VISUALIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a probabilistic self-organizing map for topographic clustering, analysis of categorical data. By considering a parsimonious mixture model, we present a new probabilistic Self-Organizing Map (SOM). The estimation of parameters is performed by the EM algorithm. Contrary to SOM. our proposed learning algorithm optimizes an objective function. Its performance is evaluated on real datasets.
引用
收藏
页码:599 / +
页数:3
相关论文
共 50 条
  • [31] A modified Fuzzy k-Partition based on indiscernibility relation for categorical data clustering
    Yanto, Iwan Tri Riyadi
    Ismail, Maizatul Akmar
    Herawan, Tutut
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 53 : 41 - 52
  • [32] Low Dimensional Representation of Space Structure and Clustering of Categorical Data
    Cao, Jianjun
    Zheng, Qibin
    Diao, Xingchun
    Weng, Nianfeng
    2018 IEEE INT CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, UBIQUITOUS COMPUTING & COMMUNICATIONS, BIG DATA & CLOUD COMPUTING, SOCIAL COMPUTING & NETWORKING, SUSTAINABLE COMPUTING & COMMUNICATIONS, 2018, : 1079 - 1086
  • [33] A Hierarchical Clustering for Categorical Data Based on Holo-entropy
    Sun, Haojun
    Chen, Rongbo
    Jin, Shulin
    Qin, Yong
    2015 12TH WEB INFORMATION SYSTEM AND APPLICATION CONFERENCE (WISA), 2015, : 269 - 274
  • [34] Clustering Categorical Data Using a Swarm-based Method
    Izakian, Hesam
    Abraham, Ajith
    Snasel, Vaclav
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1719 - +
  • [35] Subspace Clustering of Categorical and Numerical Data With an Unknown Number of Clusters
    Jia, Hong
    Cheung, Yiu-Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (08) : 3308 - 3325
  • [36] Rough subspace-based clustering ensemble for categorical data
    Gao, Can
    Pedrycz, Witold
    Miao, Duoqian
    SOFT COMPUTING, 2013, 17 (09) : 1643 - 1658
  • [37] A New Context-Based Clustering Framework for Categorical Data
    Thanh-Phu Nguyen
    Duy-Tai Dinh
    Van-Nam Huynh
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 697 - 709
  • [38] From Context to Distance: Learning Dissimilarity for Categorical Data Clustering
    Ienco, Dino
    Pensa, Ruggero G.
    Meo, Rosa
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2012, 6 (01)
  • [39] Kernel Subspace Clustering Algorithm for Categorical Data
    Xu K.-P.
    Chen L.-F.
    Sun H.-J.
    Wang B.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (11): : 3492 - 3505
  • [40] Squeezer: An efficient algorithm for clustering categorical data
    He, ZY
    Xu, XF
    Deng, SC
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2002, 17 (05) : 611 - 624