Fokker-Planck solutions for action diffusion in a noisy symplectic map

被引:0
作者
Bazzani, A
Beccaceci, L
Bigliardi, L
Turchetti, G
机构
来源
NONLINEAR AND COLLECTIVE PHENOMENA IN BEAM PHYSICS | 1997年 / 395期
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the statistical properties of symplectic maps with noise, describing a FODO cell with a sextupole and current ripples or misalignmets in the magnets. Up to some distance from the dynamic aperture, the normal form associated to the map allows to compute analytically the diffusion coefficient due to a stochastic perturbation. The action diffusion is examined and very good agreement between the solutions of the Fokker-Planck (F.P.) equation and the simulations is obtained, for the Henon and SPS maps with a white noise. The corrections appearing for a correlated noise are discussed.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
[41]   Levy anomalous diffusion and fractional Fokker-Planck equation [J].
Yanovsky, VV ;
Chechkin, AV ;
Schertzer, D ;
Tur, AV .
PHYSICA A, 2000, 282 (1-2) :13-34
[42]   ANALYTICAL SOLUTION TO THE FOKKER-PLANCK EQUATION WITH A BOTTOMLESS ACTION [J].
NAKAZATO, H .
PHYSICS LETTERS B, 1994, 333 (1-2) :98-103
[43]   FOKKER-PLANCK EQUATION [J].
DESLOGE, EA .
AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) :237-&
[44]   Similarity solutions of nonlinear diffusion problems related to mathematical hydraulics and the Fokker-Planck equation [J].
Daly, E ;
Porporato, A .
PHYSICAL REVIEW E, 2004, 70 (05) :056303-1
[45]   High fidelity numerical solutions of the Fokker-Planck equation [J].
Wojtkiewicz, SF ;
Bergman, LA ;
Spencer, BF .
STRUCTURAL SAFETY AND RELIABILITY, VOLS. 1-3, 1998, :933-940
[46]   STEADY-STATE SOLUTIONS OF THE FOKKER-PLANCK EQUATIONS [J].
ZHENG, Q ;
HAO, BL .
COMMUNICATIONS IN THEORETICAL PHYSICS, 1987, 8 (02) :153-166
[47]   Generalized Fokker-Planck equation: Derivation and exact solutions [J].
Denisov, S. I. ;
Horsthemke, W. ;
Haenggi, P. .
EUROPEAN PHYSICAL JOURNAL B, 2009, 68 (04) :567-575
[48]   The Evolution to Equilibrium of Solutions to Nonlinear Fokker-Planck Equation [J].
Barbu, Viorel ;
Roeckner, Michael .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (01) :89-131
[49]   Similarity solutions of a class of perturbative Fokker-Planck equation [J].
Lin, Wen-Tsan ;
Ho, Choon-Lin .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
[50]   SINGULARITY OF THE SOLUTIONS OF SOME GENERALIZED FOKKER-PLANCK EQUATIONS [J].
KREE, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (10) :291-294