Fokker-Planck solutions for action diffusion in a noisy symplectic map

被引:0
作者
Bazzani, A
Beccaceci, L
Bigliardi, L
Turchetti, G
机构
来源
NONLINEAR AND COLLECTIVE PHENOMENA IN BEAM PHYSICS | 1997年 / 395期
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the statistical properties of symplectic maps with noise, describing a FODO cell with a sextupole and current ripples or misalignmets in the magnets. Up to some distance from the dynamic aperture, the normal form associated to the map allows to compute analytically the diffusion coefficient due to a stochastic perturbation. The action diffusion is examined and very good agreement between the solutions of the Fokker-Planck (F.P.) equation and the simulations is obtained, for the Henon and SPS maps with a white noise. The corrections appearing for a correlated noise are discussed.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
[31]   On solutions of fractional nonlinear Fokker-Planck equationOn solutions of fractional nonlinear Fokker-Planck equationK. Singla, N. Leonenko [J].
Komal Singla ;
Nikolai Leonenko .
Fractional Calculus and Applied Analysis, 2025, 28 (3) :1094-1105
[32]   Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation [J].
da Silva, PC ;
da Silva, LR ;
Lenzi, EK ;
Mendes, RS ;
Malacarne, LC .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) :16-21
[33]   Fick and Fokker-Planck Diffusion Law in Inhomogeneous Media [J].
Andreucci, D. ;
Cirillo, E. N. M. ;
Colangeli, M. ;
Gabrielli, D. .
JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (02) :469-493
[34]   FLUX-LIMITED DIFFUSION AND FOKKER-PLANCK EQUATIONS [J].
POMRANING, GC .
NUCLEAR SCIENCE AND ENGINEERING, 1983, 85 (02) :116-126
[35]   Probabilistic relaxation labeling by Fokker-Planck diffusion on a graph [J].
Wang, Hong-Fang ;
Hancock, Edwin R. .
GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, PROCEEDINGS, 2007, 4538 :204-+
[36]   Propagator for the Fokker-Planck equation with an arbitrary diffusion coefficient [J].
Lee, Chern ;
Zhu, Ka-Di ;
Chen, Ji-Gen .
PHYSICAL REVIEW E, 2013, 88 (05)
[37]   DIFFUSION-COEFFICIENT FOR THE COMPTON FOKKER-PLANCK EQUATION [J].
PRASAD, MK ;
SHESTAKOV, AI ;
KERSHAW, DS ;
ZIMMERMAN, GB .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1988, 40 (01) :29-38
[39]   Kernelised relaxation labelling using Fokker-Planck diffusion [J].
Wang, Hong-Fang ;
Hancock, Edwin R. .
14TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2007, :29-+
[40]   Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion [J].
Abe, S .
PHYSICAL REVIEW E, 2004, 69 (01) :4