Fokker-Planck solutions for action diffusion in a noisy symplectic map

被引:0
作者
Bazzani, A
Beccaceci, L
Bigliardi, L
Turchetti, G
机构
来源
NONLINEAR AND COLLECTIVE PHENOMENA IN BEAM PHYSICS | 1997年 / 395期
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the statistical properties of symplectic maps with noise, describing a FODO cell with a sextupole and current ripples or misalignmets in the magnets. Up to some distance from the dynamic aperture, the normal form associated to the map allows to compute analytically the diffusion coefficient due to a stochastic perturbation. The action diffusion is examined and very good agreement between the solutions of the Fokker-Planck (F.P.) equation and the simulations is obtained, for the Henon and SPS maps with a white noise. The corrections appearing for a correlated noise are discussed.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
[21]   Lp-solutions of Fokker-Planck equations [J].
Wei, Jinlong ;
Liu, Bin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 :110-124
[22]   Operator solutions for fractional Fokker-Planck equations [J].
Gorska, K. ;
Penson, K. A. ;
Babusci, D. ;
Dattoli, G. ;
Duchamp, G. H. E. .
PHYSICAL REVIEW E, 2012, 85 (03)
[23]   Stabilization of Solutions of the Nonlinear Fokker-Planck Equation [J].
Kon'kov A.A. .
Journal of Mathematical Sciences, 2014, 197 (3) :358-366
[24]   ONE CLASS OF SOLUTIONS TO FOKKER-PLANCK EQUATION [J].
MAKOV, YN ;
KHOKHLOV, RV .
DOKLADY AKADEMII NAUK SSSR, 1976, 227 (02) :315-317
[25]   Global solutions to a nonlinear Fokker-Planck equation [J].
Zhang, Xingang ;
Liu, Zhe ;
Ding, Ling ;
Tang, Bo .
AIMS MATHEMATICS, 2023, 8 (07) :16115-16126
[26]   ON THE GAUSSIAN APPROXIMATION FOR SOLUTIONS OF FOKKER-PLANCK EQUATIONS [J].
KHARRASOV, MK ;
ABDULLIN, AU .
DOKLADY AKADEMII NAUK, 1994, 335 (01) :32-34
[27]   Generalized solutions to nonlinear Fokker-Planck equations [J].
Barbu, Viorel .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) :2446-2471
[28]   On solutions of fractional nonlinear Fokker-Planck equation [J].
Singla, Komal ;
Leonenko, Nikolai .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (03) :1094-1105
[29]   Anomalous diffusion: nonlinear fractional Fokker-Planck equation [J].
Tsallis, C ;
Lenzi, EK .
CHEMICAL PHYSICS, 2002, 284 (1-2) :341-347
[30]   ON THE ASYMPTOTIC EQUIVALENCE OF THE FOKKER-PLANCK AND DIFFUSION-EQUATIONS [J].
BEALS, R ;
PROTOPOPESCU, V .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 1983, 12 (02) :109-127