Fokker-Planck solutions for action diffusion in a noisy symplectic map

被引:0
作者
Bazzani, A
Beccaceci, L
Bigliardi, L
Turchetti, G
机构
来源
NONLINEAR AND COLLECTIVE PHENOMENA IN BEAM PHYSICS | 1997年 / 395期
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the statistical properties of symplectic maps with noise, describing a FODO cell with a sextupole and current ripples or misalignmets in the magnets. Up to some distance from the dynamic aperture, the normal form associated to the map allows to compute analytically the diffusion coefficient due to a stochastic perturbation. The action diffusion is examined and very good agreement between the solutions of the Fokker-Planck (F.P.) equation and the simulations is obtained, for the Henon and SPS maps with a white noise. The corrections appearing for a correlated noise are discussed.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
  • [21] SOLUTIONS OF FOKKER-PLANCK EQUATION IN DETAILED BALANCE
    RISKEN, H
    ZEITSCHRIFT FUR PHYSIK, 1972, 251 (03): : 231 - &
  • [22] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [23] Stabilization of Solutions of the Nonlinear Fokker-Planck Equation
    Kon'kov A.A.
    Journal of Mathematical Sciences, 2014, 197 (3) : 358 - 366
  • [24] ONE CLASS OF SOLUTIONS TO FOKKER-PLANCK EQUATION
    MAKOV, YN
    KHOKHLOV, RV
    DOKLADY AKADEMII NAUK SSSR, 1976, 227 (02): : 315 - 317
  • [25] Global solutions to a nonlinear Fokker-Planck equation
    Zhang, Xingang
    Liu, Zhe
    Ding, Ling
    Tang, Bo
    AIMS MATHEMATICS, 2023, 8 (07): : 16115 - 16126
  • [26] ON THE GAUSSIAN APPROXIMATION FOR SOLUTIONS OF FOKKER-PLANCK EQUATIONS
    KHARRASOV, MK
    ABDULLIN, AU
    DOKLADY AKADEMII NAUK, 1994, 335 (01) : 32 - 34
  • [27] Generalized solutions to nonlinear Fokker-Planck equations
    Barbu, Viorel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) : 2446 - 2471
  • [28] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347
  • [29] ON THE ASYMPTOTIC EQUIVALENCE OF THE FOKKER-PLANCK AND DIFFUSION-EQUATIONS
    BEALS, R
    PROTOPOPESCU, V
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1983, 12 (02): : 109 - 127
  • [30] On solutions of fractional nonlinear Fokker-Planck equationOn solutions of fractional nonlinear Fokker-Planck equationK. Singla, N. Leonenko
    Komal Singla
    Nikolai Leonenko
    Fractional Calculus and Applied Analysis, 2025, 28 (3) : 1094 - 1105