Outcome-adaptive lasso: Variable selection for causal inference
被引:131
作者:
Shortreed, Susan M.
论文数: 0引用数: 0
h-index: 0
机构:
Grp Hlth Res Inst, Biostat Unit, Seattle, WA 98101 USA
Univ Washington, Sch Publ Hlth, Dept Biostat, Seattle, WA 98195 USAGrp Hlth Res Inst, Biostat Unit, Seattle, WA 98101 USA
Shortreed, Susan M.
[1
,2
]
Ertefaie, Ashkan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY USA
Univ Penn, Wharton Sch, Dept Stat, Ctr Pharmacoepidemiol Res & Training, Philadelphia, PA 19104 USAGrp Hlth Res Inst, Biostat Unit, Seattle, WA 98101 USA
Ertefaie, Ashkan
[3
,4
]
机构:
[1] Grp Hlth Res Inst, Biostat Unit, Seattle, WA 98101 USA
[2] Univ Washington, Sch Publ Hlth, Dept Biostat, Seattle, WA 98195 USA
[3] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY USA
[4] Univ Penn, Wharton Sch, Dept Stat, Ctr Pharmacoepidemiol Res & Training, Philadelphia, PA 19104 USA
Comparative effectiveness;
Model selection;
Observational studies;
Propensity score;
PROPENSITY SCORE;
MODEL SELECTION;
ADJUSTMENT;
UNCERTAINTY;
CONFOUNDER;
SHRINKAGE;
BIAS;
D O I:
10.1111/biom.12679
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Methodological advancements, including propensity score methods, have resulted in improved unbiased estimation of treatment effects from observational data. Traditionally, a throw in the kitchen sink approach has been used to select covariates for inclusion into the propensity score, but recent work shows including unnecessary covariates can impact both the bias and statistical efficiency of propensity score estimators. In particular, the inclusion of covariates that impact exposure but not the outcome, can inflate standard errors without improving bias, while the inclusion of covariates associated with the outcome but unrelated to exposure can improve precision. We propose the outcome-adaptive lasso for selecting appropriate covariates for inclusion in propensity score models to account for confounding bias and maintaining statistical efficiency. This proposed approach can perform variable selection in the presence of a large number of spurious covariates, that is, covariates unrelated to outcome or exposure. We present theoretical and simulation results indicating that the outcome-adaptive lasso selects the propensity score model that includes all true confounders and predictors of outcome, while excluding other covariates. We illustrate covariate selection using the outcome-adaptive lasso, including comparison to alternative approaches, using simulated data and in a survey of patients using opioid therapy to manage chronic pain.
机构:
Univ Kentucky, Dept Biostat, Lexington, KY 40506 USA
Univ Kentucky, Markey Canc Ctr, Lexington, KY USAUniv Kentucky, Dept Biostat, Lexington, KY 40506 USA
Wang, Chi
;
论文数: 引用数:
h-index:
机构:
Dominici, Francesca
;
论文数: 引用数:
h-index:
机构:
Parmigiani, Giovanni
;
Zigler, Corwin Matthew
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USAUniv Kentucky, Dept Biostat, Lexington, KY 40506 USA
机构:
Univ Kentucky, Dept Biostat, Lexington, KY 40506 USA
Univ Kentucky, Markey Canc Ctr, Lexington, KY USAUniv Kentucky, Dept Biostat, Lexington, KY 40506 USA
Wang, Chi
;
论文数: 引用数:
h-index:
机构:
Dominici, Francesca
;
论文数: 引用数:
h-index:
机构:
Parmigiani, Giovanni
;
Zigler, Corwin Matthew
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USAUniv Kentucky, Dept Biostat, Lexington, KY 40506 USA