A covariant Stinespring theorem

被引:6
|
作者
Verdon, Dominic [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
QUANTUM; 2-C-ASTERISK-CATEGORIES; ALGEBRAS; VERSION; MAPS;
D O I
10.1063/5.0071215
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a finite-dimensional covariant Stinespring theorem for compact quantum groups. Let G be a compact quantum group, and let T := Rep(G) be the rigid C*-tensor category of finite-dimensional continuous unitary representations of G. Let Mod(T) be the rigid C*-2-category of cofinite semisimple finitely decomposable T-module categories. We show that finite-dimensional G-C*-algebras can be identified with equivalence classes of 1-morphisms out of the object T in Mod(T). For 1-morphisms X : T -> M-1, Y : T -> M-2, we show that covariant completely positive maps between the corresponding G-C*-algebras can be "dilated" to isometries tau : X -> Y circle times E, where E : M-2 -> M-1 is some "environment" 1-morphism. Dilations are unique up to partial isometry on the environment; in particular, the dilation minimizing the quantum dimension of the environment is unique up to a unitary. When G is a compact group, this recovers previous covariant Stinespring-type theorems. (C) 2022 Author(s).
引用
收藏
页数:49
相关论文
共 50 条
  • [21] Stinespring's theorem for unbounded operator valued local completely positive maps and its applications
    Bhat, B. V. Rajarama
    Ghatak, Anindya
    Pamula, Santhosh Kumar
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (02): : 547 - 578
  • [22] Structure theorem for covariant bundles on quantum homogeneous spaces
    Oeckl, R
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 (12) : 1401 - 1406
  • [23] Covariant approach to the no-ghost theorem in massive gravity
    Kugo, Taichiro
    Ohta, Nobuyoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2014, 2014 (04):
  • [24] GOLDSTONES THEOREM FOR A CLASS OF CURRENTS NOT COVARIANT UNDER TRANSLATIONS
    FERRARI, R
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1973, A 14 (02): : 386 - 402
  • [25] Relativistic Momentum and Manifestly Covariant Equipartition Theorem Revisited
    Chacon-Acosta, Guillermo
    Dagdug, Leonardo
    Morales-Tecotl, Hugo A.
    GRAVITATIONAL PHYSICS: TESTING GRAVITY FROM SUBMILLIMETER TO COSMIC SCALE, 2010, 1256 : 231 - 238
  • [26] A THEOREM ON COVARIANT CONSTANT (1, 1)-TENSOR FIELDS
    JEFFRIES, CD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (05) : 1030 - &
  • [27] COVARIANT FORMULATION OF NOETHER'S THEOREM FOR κ-MINKOWSKI TRANSLATIONS
    Agostini, Alessandra
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (07): : 1333 - 1358
  • [28] On the general-relativistic and covariant form of integration of the Helmholtz theorem
    Schröder, W
    Treder, HJ
    FOUNDATIONS OF PHYSICS, 2000, 30 (11) : 1983 - 1986
  • [29] On the General-Relativistic and Covariant Form of Integration of the Helmholtz Theorem
    Wilfried Schröder
    Hans-Jürgen Treder
    Foundations of Physics, 2000, 30 : 1983 - 1986
  • [30] SOFT DILATON THEOREM IN COVARIANT STRING FIELD-THEORY
    MYERS, RC
    PENATI, S
    PERNICI, M
    STROMINGER, A
    NUCLEAR PHYSICS B, 1988, 310 (01) : 25 - 43