A covariant Stinespring theorem

被引:6
|
作者
Verdon, Dominic [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
QUANTUM; 2-C-ASTERISK-CATEGORIES; ALGEBRAS; VERSION; MAPS;
D O I
10.1063/5.0071215
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a finite-dimensional covariant Stinespring theorem for compact quantum groups. Let G be a compact quantum group, and let T := Rep(G) be the rigid C*-tensor category of finite-dimensional continuous unitary representations of G. Let Mod(T) be the rigid C*-2-category of cofinite semisimple finitely decomposable T-module categories. We show that finite-dimensional G-C*-algebras can be identified with equivalence classes of 1-morphisms out of the object T in Mod(T). For 1-morphisms X : T -> M-1, Y : T -> M-2, we show that covariant completely positive maps between the corresponding G-C*-algebras can be "dilated" to isometries tau : X -> Y circle times E, where E : M-2 -> M-1 is some "environment" 1-morphism. Dilations are unique up to partial isometry on the environment; in particular, the dilation minimizing the quantum dimension of the environment is unique up to a unitary. When G is a compact group, this recovers previous covariant Stinespring-type theorems. (C) 2022 Author(s).
引用
收藏
页数:49
相关论文
共 50 条
  • [1] Covariant version of the Stinespring type theorem for Hilbert C*-modules
    Joita, Maria
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (04): : 803 - 813
  • [2] A stochastic Stinespring Theorem
    Goswami, D
    Lindsay, JM
    Wills, SJ
    MATHEMATISCHE ANNALEN, 2001, 319 (04) : 647 - 673
  • [3] A stochastic Stinespring Theorem
    Debashish Goswami
    J. Martin Lindsay
    Stephen J. Wills
    Mathematische Annalen, 2001, 319 : 647 - 673
  • [4] COVARIANT VERSION OF THE STINESPRING TYPE THEOREM FOR n-TUPLES OF COMPLETELY POSITIVE MAPS ON HILBERT C*-MODULES
    Joita, Maria
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (04): : 3 - 10
  • [5] A continuity theorem for Stinespring's dilation
    Kretschmann, Dennis
    Schlingemann, Dirk
    Werner, Reinhard F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) : 1889 - 1904
  • [6] Induced Stinespring Factorization and the Wittstock Support Theorem
    J. E. Pascoe
    Ryan Tully-Doyle
    Results in Mathematics, 2023, 78
  • [7] Induced Stinespring Factorization and the Wittstock Support Theorem
    Pascoe, J. E.
    Tully-Doyle, Ryan
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [8] STINESPRING'S THEOREM FOR HILBERT C*-MODULES
    Asadi, Mohammad B.
    JOURNAL OF OPERATOR THEORY, 2009, 62 (02) : 235 - 238
  • [9] STINESPRING'S THEOREM FOR MAPS ON HILBERT C*- MODULES
    Bhat, B. V. Rajarama
    Ramesh, G.
    Sumesh, K.
    JOURNAL OF OPERATOR THEORY, 2012, 68 (01) : 173 - 178
  • [10] ON A THEOREM OF STINESPRING CONCERNING INTEGRAL-OPERATORS OF TRACE CLASS
    KAMP, WP
    LORENTZ, RA
    REJTO, PA
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 393 : 1 - 20