High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties

被引:63
作者
Li, Lingjun [1 ,2 ]
Xu, Ming [1 ]
Chen, Zhaoyong [1 ]
Zhou, Xiang [2 ]
Zhang, Qiaobao [2 ]
Zhu, Huali [1 ]
Wu, Chun [2 ]
Zhang, Kaili [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha 410114, Hunan, Peoples R China
[2] City Univ Hong Kong, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Cathode material; Lithium-rich layered oxide; Chelating agent; CATHODE MATERIAL; COMPOSITE ELECTRODES; ENERGY-STORAGE; METAL-OXIDES; ION; BATTERIES; LI; MN; EVOLUTION; IMPEDANCE;
D O I
10.1016/j.electacta.2015.05.171
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The mechanisms and effects of three typical chelating agents, namely glucose, citric acid and sucrose on the sol-gel synthesis process, electrochemical degradation and structural evolution of 0.5Li(2)MnO(3)center dot 0.5LiNi(0.5)Co(0.2)Mn(0.3)O(2) (LLMO) materials are systematically compared for the first time. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis indicate that the sample synthesized from sucrose owns well structure, homogenous distribution, low Ni3+ concentration and good surface structural stability during cycling, respectively. Electrochemical tests further prove that the LLMO material obtained from sucrose maintains 258.4 mAh g(-1) with 94.8% capacity retention after 100 cycles at 0.2 C. The superior electrochemical performance can be ascribed to the exceptional complexing mechanism of sucrose, compared to those of the glucose and citric acid. Namely, one mole sucrose can be hydrolyzed into two different monosaccharides and further chelates three M (Li, Ni, Co and Mn) ions to form a more uniform ion-chelated matrix during sol-gel process. This discovery is an important step towards understanding the selection criterion of chelating agents for sal-gel method, that chelating agent with excellent complexing capability is beneficial to the distribution, structural stability and electrochemical properties of advanced lithium-rich layered materials. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:446 / 455
页数:10
相关论文
共 38 条
[1]   Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating [J].
Amalraj, Francis ;
Talianker, Michael ;
Markovsky, Boris ;
Burlaka, Luba ;
Leifer, Nicole ;
Goobes, Gil ;
Erickson, Evan M. ;
Haik, Ortal ;
Grinblat, Judith ;
Zinigrad, Ella ;
Aurbach, Doron ;
Lampert, Jordan K. ;
Shin, Ji-Yong ;
Schulz-Dobrick, Martin ;
Garsuch, Arnd .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :A2220-A2233
[2]   Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[M]O2 (M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions [J].
Arinkumar, T. A. ;
Wu, Y. ;
Manthiram, A. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3067-3073
[3]   Hierarchical Li1.2Ni0.2Mn0.6O2 Nanoplates with Exposed {010} Planes as High-Performance Cathode Material for Lithium-Ion Batteries [J].
Chen, Lai ;
Su, Yuefeng ;
Chen, Shi ;
Li, Ning ;
Bao, Liying ;
Li, Weikang ;
Wang, Zhao ;
Wang, Meng ;
Wu, Feng .
ADVANCED MATERIALS, 2014, 26 (39) :6756-6760
[4]   Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures [J].
Croy, J. R. ;
Kang, S. -H. ;
Balasubramanian, M. ;
Thackeray, M. M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (10) :1063-1066
[5]   Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries [J].
Gu, Meng ;
Belharouak, Ilias ;
Zheng, Jianming ;
Wu, Huiming ;
Xiao, Jie ;
Genc, Arda ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
ACS NANO, 2013, 7 (01) :760-767
[6]   Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method [J].
He, Xin ;
Wang, Jun ;
Kloepsch, Richard ;
Krueger, Steffen ;
Jia, Haiping ;
Liu, Haidong ;
Vortmann, Britta ;
Li, Jie .
NANO RESEARCH, 2014, 7 (01) :110-118
[7]   Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery [J].
Hong, Jihyun ;
Seo, Dong-Hwa ;
Kim, Sung-Wook ;
Gwon, Hyeokjo ;
Oh, Song-Taek ;
Kang, Kisuk .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (45) :10179-10186
[8]   Manganese-based lithium batteries for hybrid electric vehicle applications [J].
Horiba, T ;
Hironaka, K ;
Matsumura, T ;
Kai, T ;
Koseki, M ;
Muranaka, Y .
JOURNAL OF POWER SOURCES, 2003, 119 :893-896
[9]   Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5) [J].
Hy, Sunny ;
Felix, Felix ;
Rick, John ;
Su, Wei-Nien ;
Hwang, Bing Joe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (03) :999-1007
[10]   The significance of the Li2MnO3 component in 'composite' xLi2MnO3 • (1-x)LiMn0.5Ni0.5O2 electrodes [J].
Johnson, CS ;
Kim, JS ;
Lefief, C ;
Li, N ;
Vaughey, JT ;
Thackeray, MM .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (10) :1085-1091