Graphene oxide-decorated Fe2(MoO4)3 microflowers as a promising anode for lithium and sodium storage

被引:27
|
作者
Han, Chunhua [1 ]
Ren, Xiaoji [1 ]
Li, Qidong [1 ]
Luo, Wen [1 ,2 ]
Huang, Lei [1 ]
Zhou, Liang [1 ]
Mai, Liqiang [1 ,3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Luoshi Rd 122, Wuhan 430070, Hubei, Peoples R China
[2] Univ Lorraine, Inst Jean Barriol, Lab Chim & Phys Approche Multiechelles Milieux Co, F-57070 Metz, France
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
Fe-2(MoO4)(3) microflowers; anode; lithium and sodium storage; ELECTROCHEMICAL ENERGY-STORAGE; ION BATTERIES; HOLLOW MICROSPHERES; SUPERIOR LITHIUM; XPS SPECTRA; PERFORMANCE; NANOPARTICLES; CAPACITY; COMPOSITE; MECHANISM;
D O I
10.1007/s12274-017-1742-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mixed transition metal oxides (MTMOs) have received intensive attention as promising anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). In this work, we demonstrate a facile one-step water-bath method for the preparation of graphene oxide (GO) decorated Fe-2(MoO4)(3) (FMO) microflower composite (FMO/GO), in which the FMO is constructed by numerous nanosheets. The resulting FMO/GO exhibits excellent electrochemical performances in both LIBs and SIBs. As the anode material for LIBs, the FMO/GO delivers a high capacity of 1,220 mAh.g(-1) at 200 mA.g(-1) after 50 cycles and a capacity of 685 mAh.g(-1) at a high current density of 10 A.g(-1). As the anode material for SIBs, the FMO/GO shows an initial discharge capacity of 571 mAh.g(-1) at 100 mA.g(-1), maintaining a discharge capacity of 307 mAh.g(-1) after 100 cycles. The promising performance is attributed to the good electrical transport from the intimate contact between FMO and graphene oxide. This work indicates that the FMO/GO composite is a promising anode for high-performance lithium and sodium storage.
引用
收藏
页码:1285 / 1293
页数:9
相关论文
共 50 条
  • [41] Synthesis of porous Mn2O3 embedded in reduced graphene oxide as advanced anode materials for lithium storage
    Zhang, Lingling
    Ge, Danhua
    Geng, Hongbo
    Zheng, Junwei
    Cao, Xueqin
    Gu, Hongwei
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (15) : 7102 - 7107
  • [42] Reduced graphene oxide decorated ternary Cu2SnS3 as anode materials for lithium ion batteries
    Tao, Hua-Chao
    Zhu, Shou-Chao
    Yang, Xue-Lin
    Zhang, Lu-Lu
    Ni, Shi-Bing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 760 : 127 - 134
  • [43] Facile synthesis of Fe3O4 ultrathin layer coated Fe2O3 composite anode for enhanced lithium-ion storage
    Lv, Xiaoxin
    Zhang, Yan
    Wen, Lin
    Yang, Aomen
    Liang, Jun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 947
  • [44] In situ diffusion growth of Fe2(MoO4)3 nanocrystals on the surface of α-MoO3 nanorods with significantly enhanced ethanol sensing properties
    Chen, Yujin
    Meng, Fanna
    Ma, Chao
    Yang, Zhiwei
    Zhu, Chunling
    Ouyang, Qiuyun
    Gao, Peng
    Li, Jianqi
    Sun, Chunwen
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (25) : 12900 - 12906
  • [45] A novel efficient electromagnetic absorber with MoO3@Fe2(MoO4)3 core-shell nanobelts insert in reduced graphene oxide nanosheets
    Zhang, Zhi
    Xia, Yilu
    Yao, Yao
    Wu, Fan
    Zhang, Zhongwei
    Yang, Zhiqian
    Wang, Shuo
    Zhang, Pin
    Zhou, Wenke
    MATERIALS LETTERS, 2021, 303
  • [46] 3D Hierarchical Carbon Microflowers decorated with MoO2 Nanoparticles for lithium ion batteries
    Zhang, Peng
    Zou, Lei
    Hu, Hongxing
    Wang, Mengran
    Fang, Jing
    Lai, Yanqing
    Li, Jie
    ELECTROCHIMICA ACTA, 2017, 250 : 219 - 227
  • [47] Engineering microstructure of LiFe(MoO4)2 as an advanced anode material for rechargeable lithium-ion battery
    Tamboli, Asiya M.
    Tamboli, Mohaseen S.
    Dwivedi, Pravin Kumari
    Praveen, C. S.
    Karbhal, Indrapal
    Shelke, Manjusha, V
    Kim, Bomyung
    Park, Chinho
    Kale, Bharat B.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (19) : 24273 - 24284
  • [48] Synthesis and Characterization of Fe2(MoO4)3 Nano-Photocatalyst by Simple Sol-Gel Method
    Umapathy, V.
    Manikandan, A.
    Ramu, P.
    Antony, S. Arul
    Neeraja, P.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (01) : 987 - 993
  • [49] Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3
    Senthilkumar, Baskar
    Selvan, Ramakrishnan Kalai
    Barpanda, Prabeer
    ELECTROCHEMISTRY COMMUNICATIONS, 2020, 110
  • [50] Overlooked key role of Mo(VI) in Fe2(MoO4)3 for peroxymonosulfate activation with 1O2 dominated degradation pathway
    Chang, Lian
    Xie, Xinyu
    Zhang, Xiaodan
    Chai, Hongxiang
    Huang, Yuming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 322