Graphene oxide-decorated Fe2(MoO4)3 microflowers as a promising anode for lithium and sodium storage

被引:27
|
作者
Han, Chunhua [1 ]
Ren, Xiaoji [1 ]
Li, Qidong [1 ]
Luo, Wen [1 ,2 ]
Huang, Lei [1 ]
Zhou, Liang [1 ]
Mai, Liqiang [1 ,3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Luoshi Rd 122, Wuhan 430070, Hubei, Peoples R China
[2] Univ Lorraine, Inst Jean Barriol, Lab Chim & Phys Approche Multiechelles Milieux Co, F-57070 Metz, France
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
Fe-2(MoO4)(3) microflowers; anode; lithium and sodium storage; ELECTROCHEMICAL ENERGY-STORAGE; ION BATTERIES; HOLLOW MICROSPHERES; SUPERIOR LITHIUM; XPS SPECTRA; PERFORMANCE; NANOPARTICLES; CAPACITY; COMPOSITE; MECHANISM;
D O I
10.1007/s12274-017-1742-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mixed transition metal oxides (MTMOs) have received intensive attention as promising anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). In this work, we demonstrate a facile one-step water-bath method for the preparation of graphene oxide (GO) decorated Fe-2(MoO4)(3) (FMO) microflower composite (FMO/GO), in which the FMO is constructed by numerous nanosheets. The resulting FMO/GO exhibits excellent electrochemical performances in both LIBs and SIBs. As the anode material for LIBs, the FMO/GO delivers a high capacity of 1,220 mAh.g(-1) at 200 mA.g(-1) after 50 cycles and a capacity of 685 mAh.g(-1) at a high current density of 10 A.g(-1). As the anode material for SIBs, the FMO/GO shows an initial discharge capacity of 571 mAh.g(-1) at 100 mA.g(-1), maintaining a discharge capacity of 307 mAh.g(-1) after 100 cycles. The promising performance is attributed to the good electrical transport from the intimate contact between FMO and graphene oxide. This work indicates that the FMO/GO composite is a promising anode for high-performance lithium and sodium storage.
引用
收藏
页码:1285 / 1293
页数:9
相关论文
共 50 条
  • [31] Carbon Cloth Decorated with MoS2 Microflowers as Flexible Binder-Free Anodes for Lithium and Sodium Storage
    Kang, Jinwei
    Feng, Huagui
    Huang, Ping
    Su, Qingmei
    Dong, Shijia
    Jiao, Weicheng
    Chen, Xiaojuan
    Du, Gaohui
    Yu, Yuan
    Xu, Bingshe
    ENERGY TECHNOLOGY, 2019, 7 (05)
  • [32] Impact of Fe2(MoO4)3 and ZnMoO4 on CO Tolerance of Pt/C catalysts for enhanced methanol electrooxidation efficiency
    Rao, H. Seshagiri
    Nagaraja, Pernapati
    Sharma, Shuchi
    Rao, G. Ranga
    Justin, Ponniah
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [33] Synthesis, characterization and photocatalytic performance of iron molybdate (Fe2(MoO4)3) for the degradation of endosulfan pesticide
    Parveen, S.
    Bhatti, I. A.
    Ashar, A.
    Javed, T.
    Mohsin, M.
    Hussain, M. T.
    Khan, M., I
    Naz, S.
    Iqbal, M.
    MATERIALS RESEARCH EXPRESS, 2020, 7 (03)
  • [34] Synthesis and enhanced toluene gas sensing properties of 1-D α-MoO3/Fe2(MoO4)3 heterostructure
    Li, Jintao
    Wang, Liwei
    Liu, Hongjie
    Zhao, Jing
    Li, Xiao
    Wei, Hao
    Han, Yafei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 694 : 939 - 945
  • [35] Photocatalytic degradation of methylene blue dye via MoO3, NiMoO4, Co0.7Fe0.3(MoO4) and Fe2(MoO4)3 thin films prepared by spray pyrolysis technique
    Arfaoui, A.
    Mhamdi, A.
    Mubaraki, S. M. A.
    Belgacem, S.
    BULLETIN OF MATERIALS SCIENCE, 2021, 44 (04)
  • [36] Design and preparation of carbon-coated NaZnFe(MoO4)3 composite as novel anode materials for lithium/sodium-ion batteries
    Zhao, Xin
    Lu, Xiuxia
    Zhang, Limin
    Zhang, Jianyin
    JOURNAL OF SOLID STATE CHEMISTRY, 2024, 340
  • [37] Fe2(MoO4)3 modified hematite with oxygen vacancies for high-efficient water oxidation
    Wei, Aimin
    Deng, Jiujun
    Lu, Cheng
    Wang, Hang
    Yang, Bin
    Zhong, Jun
    CHEMICAL ENGINEERING JOURNAL, 2020, 395
  • [38] LiY(MoO4)2 nanotubes: Novel zero-strain anode for electrochemical energy storage
    Peng, Na
    Cheng, Xing
    Yu, Haoxiang
    Zhu, Haojie
    Liu, Tingting
    Zheng, Runtian
    Shui, Miao
    Xie, Ying
    Shu, Jie
    ENERGY STORAGE MATERIALS, 2019, 21 : 297 - 307
  • [39] La2(MoO4)3@C as novel anode for lithium ion battery: Structural and chemical evolutions upon electrochemical cycling
    Jiang, Cheng
    Liu, Tingting
    Zheng, Runtian
    Peng, Na
    Zhang, Jundong
    Cheng, Xing
    Yu, Haoxiang
    Shui, Miao
    Shu, Jie
    CERAMICS INTERNATIONAL, 2019, 45 (06) : 7754 - 7760
  • [40] GeO2 decorated reduced graphene oxide as anode material of sodium ion battery
    Qin, Wei
    Chen, Taiqiang
    Hu, Bingwen
    Sun, Zhuo
    Pan, Likun
    ELECTROCHIMICA ACTA, 2015, 173 : 193 - 199