Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration

被引:124
作者
Khan, Ather Farooq [1 ]
Saleem, Muhammad [1 ]
Afzal, Adeel [1 ,2 ,3 ]
Ali, Asghar [3 ]
Khan, Afsar [4 ]
Khan, Abdur Rahman [4 ]
机构
[1] COMSATS Inst Informat Technol, Interdisciplinary Res Ctr Biomed Mat, Lahore 54000, Pakistan
[2] King Fand Univ Petr & Minerals, Affiliated Coll Hafr Al Batin, Hafar al Batin 31991, Saudi Arabia
[3] ALAM Medix, Res & Dev Unit, Lahore 54000, Pakistan
[4] COMSATS Inst Informat Technol, Dept Chem, Abbottabad 22060, Pakistan
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2014年 / 35卷
关键词
Bioceramics; Bioactivity; Bone regeneration; Calcium phosphates; Hydroxyapatite; Silicon substitution; ALPHA-TRICALCIUM PHOSPHATE; IN-VITRO; CERAMIC COMPOSITION; INVITRO BEHAVIOR; BLOCK GRAFT; HYDROXYAPATITE; TISSUE; DIFFERENTIATION; BIOMATERIALS; SI;
D O I
10.1016/j.msec.2013.11.013
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Bone graft substitutes are widely used for bone regeneration and repair in defect sites resulting from aging, disease, trauma, or accident. With invariably increasing clinical demands, there is an urgent need to produce artificial materials, which are readily available and are capable of fast and guided skeletal repair. Calcium phosphate based bioactive ceramics are extensively utilized in bone regeneration and repair applications. Silicon is often utilized as a substituent or a dopant in these bioceramics, since it significantly enhances the ultimate properties of conventional biomaterials such as surface chemical structure, mechanical strength, bioactivity, biocompatibility, etc. This article presents an overview of the silicon substituted bioceramics, which have emerged as efficient bone replacement and bone regeneration materials. Thus, the role of silicon in enhancing the biological performance and bone forming capabilities of conventional calcium phosphate based bioceramics is identified and reviewed. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 129 条
[1]  
Aoki H., 1994, MED APPL HYDROXYAPAT
[2]   β-tricalcium phosphate in the early phase of socket healing: an experimental study in the dog [J].
Araujo, Mauricio G. ;
Liljenberg, Birgitta ;
Lindhe, Jan .
CLINICAL ORAL IMPLANTS RESEARCH, 2010, 21 (04) :445-454
[3]   Sol-gel silica-based biomaterials and bone tissue regeneration [J].
Arcos, Daniel ;
Vallet-Regi, Maria .
ACTA BIOMATERIALIA, 2010, 6 (08) :2874-2888
[4]   In vitro bioactivity of silicon-substituted hydroxyapatites [J].
Balas, F ;
Pérez-Pariente, J ;
Vallet-Regí, M .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 66A (02) :364-375
[5]   Ionic substitutions in calcium phosphates synthesized at low temperature [J].
Boanini, E. ;
Gazzano, M. ;
Bigi, A. .
ACTA BIOMATERIALIA, 2010, 6 (06) :1882-1894
[6]   Silicon-substituted calcium phosphates - A critical view [J].
Bohner, Marc .
BIOMATERIALS, 2009, 30 (32) :6403-6406
[7]  
Botelho C., 2005, Silicon-substituted Hydroxyapatite for Biomedical Applications
[8]   Human osteoblast response to silicon-substituted hydroxyapatite [J].
Botelho, C. M. ;
Brooks, R. A. ;
Best, S. M. ;
Lopes, M. A. ;
Santos, J. D. ;
Rushton, N. ;
Bonfield, W. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 79A (03) :723-730
[9]   Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite [J].
Botelho, C. M. ;
Brooks, R. A. ;
Spence, G. ;
McFarlane, I. ;
Lopes, M. A. ;
Best, S. M. ;
Santos, J. D. ;
Rushton, N. ;
Bonfield, W. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 78A (04) :709-720
[10]   Osteoclast differentiation and activation [J].
Boyle, WJ ;
Simonet, WS ;
Lacey, DL .
NATURE, 2003, 423 (6937) :337-342