CO2 to Formic Acid Using Cu-Sn on Laser-Induced Graphene

被引:62
作者
Ren, Muqing [1 ]
Zheng, Hongzhi [2 ,3 ]
Lei, Jincheng [4 ]
Zhang, Jibo [2 ,3 ]
Wang, Xiaojun [2 ,3 ]
Yakobson, Boris, I [5 ,6 ,7 ]
Yao, Yan [2 ,3 ]
Tour, James M. [5 ,6 ,7 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[3] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
[4] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[5] Rice Univ, Dept Mat Sci & NanoEngn, Dept Chem, Houston, TX 77005 USA
[6] Rice Univ, Smalley Curl Inst, Houston, TX 77005 USA
[7] Rice Univ, NanoCarbon Ctr, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
laser-induced graphene; CuSn-LIG; electrochemical reduction; formic acid; carbon dioxide; ELECTROCHEMICAL REDUCTION; FARADAIC EFFICIENCY; CARBON-DIOXIDE; CHALLENGES; ELECTRODES; CONVERSION; CATALYSTS; ELECTROREDUCTION; NANOWIRES;
D O I
10.1021/acsami.0c08964
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Converting CO2 into fuels and other value-added chemicals via an electrochemical reduction method has recently attracted great interest. However, there are still challenges to find suitable catalysts with high selectivity toward the formic acid formation. Here, we report the bimetallic CuSn-based catalyst to reduce CO2 to formic acid by optimizing the ratio of Cu to Sn to achieve the optimal selectivity. The catalyst is generated on laser-induced graphene. Among the catalysts, CuSn-4 with Cu/Sn atomic ratio close to 1:2 shows a faradaic efficiency of 99% toward formic acid with a high partial current density of 26 mA/cm(2). Density functional theory calculations demonstrate that OCHO* intermediate formation is more favorable than that of COOH* on Sn sites, while OCHO* intermediate formation is moderate on Cu sites. The synergetic catalytic effect between Cu and Sn would further favor HCOOH formation. This study provides significant insight into the mechanism of formic acid formation.
引用
收藏
页码:41223 / 41229
页数:7
相关论文
共 47 条
[1]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[2]   X-RAY PHOTOELECTRON SPECTROSCOPIC STUDIES OF TIN ELECTRODES AFTER POLARIZATION IN SODIUM-HYDROXIDE SOLUTION [J].
ANSELL, RO ;
DICKINSON, T ;
POVEY, AF ;
SHERWOOD, PMA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (09) :1360-1364
[3]   Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO [J].
Back, Seoin ;
Yeom, Min Sun ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (09) :5089-5096
[4]   Synergistic catalysis of CuO/In2O3 composites for highly selective electrochemical CO2 reduction to CO [J].
Chu, Senlin ;
Hong, Song ;
Masa, Justus ;
Li, Xin ;
Sun, Zhenyu .
CHEMICAL COMMUNICATIONS, 2019, 55 (82) :12380-12383
[5]   Mechanism of Graphene Oxide Formation [J].
Dimiev, Ayrat M. ;
Tour, James M. .
ACS NANO, 2014, 8 (03) :3060-3068
[6]   Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes [J].
Feaster, Jeremy T. ;
Shi, Chuan ;
Cave, Etosha R. ;
Hatsukade, Tom T. ;
Abram, David N. ;
Kuhl, Kendra P. ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2017, 7 (07) :4822-4827
[7]   Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles [J].
Gao, Dunfeng ;
Zhou, Hu ;
Wang, Jing ;
Miao, Shu ;
Yang, Fan ;
Wang, Guoxiong ;
Wang, Jianguo ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) :4288-4291
[8]   Boosting Formate Production in Electrocatalytic CO2 Reduction over Wide Potential Window on Pd Surfaces [J].
Jiang, Bei ;
Zhang, Xia-Guang ;
Jiang, Kun ;
Wu, De-Yin ;
Cai, Wen-Bin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (08) :2880-2889
[9]   High-efficiency electrochemical CO2-to-methane reduction method using aqueous KHCO3 media at less than 273 K [J].
Kaneco, S ;
Hiei, N ;
Xing, Y ;
Katsumata, H ;
Ohnishi, H ;
Suzuki, T ;
Ohta, K .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (03) :152-156
[10]   Mechanistic Pathway in the Electrochemical Reduction of CO2 on RuO2 [J].
Karamad, Mohammadreza ;
Hansen, Heine A. ;
Rossmeisl, Jan ;
Norskov, Jens K. .
ACS CATALYSIS, 2015, 5 (07) :4075-4081