Predicting Medical Interventions from Vital Parameters: Towards a Decision Support System for Remote Patient Monitoring

被引:5
作者
Gontarska, Kordian [1 ,2 ,3 ,4 ,5 ,6 ]
Wrazen, Weronika [1 ]
Beilharz, Jossekin [1 ,3 ,4 ,5 ,6 ]
Schmid, Robert [1 ,3 ,4 ,5 ,6 ]
Thamsen, Lauritz [2 ]
Polze, Andreas [1 ]
机构
[1] Univ Potsdam, Hasso Plattner Inst, Potsdam, Germany
[2] Tech Univ Berlin, Berlin, Germany
[3] Charite Univ Med Berlin, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Berlin Inst Hlth, Berlin, Germany
来源
ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2021) | 2021年
关键词
Telemedicine; Decision Support System; Remote Patient Monitoring; Machine Learning; Heart Failure;
D O I
10.1007/978-3-030-77211-6_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardiovascular diseases and heart failures in particular are the main cause of non-communicable disease mortality in the world. Constant patient monitoring enables better medical treatment as it allows practitioners to react on time and provide the appropriate treatment. Telemedicine can provide constant remote monitoring so patients can stay in their homes, only requiring medical sensing equipment and network connections. A limiting factor for telemedical centers is the amount of patients that can be monitored simultaneously. We aim to increase this amount by implementing a decision support system. This paper investigates a machine learning model to estimate a risk score based on patient vital parameters that allows sorting all cases every day to help practitioners focus their limited capacities on the most severe cases. The model we propose reaches an AUCROC of 0.84, whereas the baseline rule-based model reaches an AUCROC of 0.73. Our results indicate that the usage of deep learning to improve the efficiency of telemedical centers is feasible. This way more patients could benefit from better health-care through remote monitoring.
引用
收藏
页码:293 / 297
页数:5
相关论文
共 10 条
[1]   Effectiveness of telemedicine: A systematic review of reviews [J].
Ekeland, Anne G. ;
Bowes, Alison ;
Flottorp, Signe .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2010, 79 (11) :736-771
[2]   Predictive Models for Risk Assessment of Worsening Events in Chronic Heart Failure Patients [J].
Groccia, Maria Carmela ;
Lofaro, Danilo ;
Guido, Rosita ;
Conforti, Domenico ;
Sciacqua, Angela .
2018 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2018, 45
[3]  
Heinze T, 2011, LECT NOTES ARTIF INT, V6679, P413, DOI 10.1007/978-3-642-21222-2_50
[4]   Telemedical Interventional Management in Heart Failure II (TIM-HF2), a randomised, controlled trial investigating the impact of telemedicine on unplanned cardiovascular hospitalisations and mortality in heart failure patients: study design and description of the intervention [J].
Koehler, Friedrich ;
Koehler, Kerstin ;
Deckwart, Oliver ;
Prescher, Sandra ;
Wegscheider, Karl ;
Winkler, Sebastian ;
Vettorazzi, Eik ;
Polze, Andreas ;
Stangl, Karl ;
Hartmann, Oliver ;
Marx, Almuth ;
Neuhaus, Petra ;
Scherf, Michael ;
Kirwan, Bridget-Anne ;
Anker, Stefan D. .
EUROPEAN JOURNAL OF HEART FAILURE, 2018, 20 (10) :1485-1493
[5]   Efficacy of telemedical interventional management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial [J].
Koehler, Friedrich ;
Koehler, Kerstin ;
Deckwart, Oliver ;
Prescher, Sandra ;
Wegscheider, Karl ;
Kirwan, Bridget-Anne ;
Winkler, Sebastian ;
Vettorazzi, Eik ;
Bruch, Leonhard ;
Oeff, Michael ;
Zugck, Christian ;
Doerr, Gesine ;
Naegele, Herbert ;
Stoerk, Stefan ;
Butter, Christian ;
Sechtem, Udo ;
Angermann, Christiane ;
Gola, Guntram ;
Prondzinsky, Roland ;
Edelmann, Frank ;
Spethmann, Sebastian ;
Schellong, Sebastian M. ;
Schulze, P. Christian ;
Bauersachs, Johann ;
Wellge, Brunhilde ;
Schoebel, Christoph ;
Tajsic, Milos ;
Dreger, Henryk ;
Anker, Stefan D. ;
Stangl, Karl .
LANCET, 2018, 392 (10152) :1047-1057
[6]  
Polze Andreas, 2010, Proceedings of the 2010 13th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing Workshops (ISORCW Workshops 2010). Volume II: Workshops, P204, DOI 10.1109/ISORCW.2010.31
[7]   Developing healthcare rule-based expert systems: Case study of a heart failure telemonitoring system [J].
Seto, Emily ;
Leonard, Kevin J. ;
Cafazzo, Joseph A. ;
Barnsley, Jan ;
Masino, Caterina ;
Ross, Heather J. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2012, 81 (08) :556-565
[8]  
Shortliffe E.H., 1975, COMPUT BIOMED RES
[9]   Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization The LINK-HF Multicenter Study [J].
Stehlik, Josef ;
Schmalfuss, Carsten ;
Bozkurt, Biykem ;
Nativi-Nicolau, Jose ;
Wohlfahrt, Peter ;
Wegerich, Stephan ;
Rose, Kevin ;
Ray, Ranjan ;
Schofield, Richard ;
Deswal, Anita ;
Sekaric, Jadranka ;
Anand, Sebastian ;
Richards, Dylan ;
Hanson, Heather ;
Pipke, Matt ;
Pham, Michael .
CIRCULATION-HEART FAILURE, 2020, 13 (03) :E006513
[10]  
World Health Organization, 2020, WHO WORLD HLTH STAT