Mapping Ratoon Rice Planting Area in Central China Using Sentinel-2 Time Stacks and the Phenology-Based Algorithm

被引:19
|
作者
Liu, Shishi [1 ,2 ]
Chen, Yuren [2 ]
Ma, Yintao [2 ]
Kong, Xiaoxuan [2 ]
Zhang, Xinyu [1 ,2 ]
Zhang, Dongying [3 ]
机构
[1] Huazhong Agr Univ, Macro Agr Res Inst, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Sch Resources & Environm, Wuhan 430070, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Peoples R China
关键词
Sentinel-2; rice; land cover mapping; phenology; crop planting area; PADDY RICE; MEKONG DELTA; SERIES; AGRICULTURE; INTENSIFICATION; SYSTEMS; SCALES; IMAGES; SOUTH;
D O I
10.3390/rs12203400
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping rice cropping systems is important for grain yield prediction and food security assessments. Both single- and double-season rice are the dominant rice systems in central China. However, because of increasing labor shortages and high costs, there has been a gradual decline in double-season rice. Ratoon rice (RR) has been proposed as an alternative system that balances the productivity, cost, and labor requirements of rice cultivation. RR has been expanding in central China, encouraged by the improved cultivars, machinery, and favorable policies. However, to our knowledge, the distribution of RR has not been mapped with remote sensing techniques. This study developed a phenology-based algorithm to map RR at a 10 m resolution in Hubei Province, Central China, using dense time stacks of Sentinel-2 images (cloud cover <80%) in 2018. The key in differentiating RR from the other rice cropping systems is through the timing of maturity. We proposed to use two contrast vegetation indices to identify RR fields. The newly-developed yellowness index (YI) calculated with the reflectance of blue, green, and red bands was used to detect the ripening phase, and the enhanced vegetation index (EVI) was used to detect the green-up of the second-season crop to eliminate the misclassification caused by stubbles left in the field. The RR map demonstrated that RR was mainly distributed in the low alluvial plains of central and southern Hubei Province. The total planting area of RR in 2018 was 2225.4 km(2), accounting for 10.03% of the total area of paddy rice fields. The overall accuracy of RR, non-RR rice fields, and non-rice land cover types was 0.76. The adjusted overall accuracy for RR and non-RR was 0.91, indicating that the proposed YI and the phenology-based algorithm could accurately identify RR fields from the paddy rice fields.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Large-scale mapping of new mixed rice cropping patterns in southern China with phenology-based algorithm and MODIS dataset
    Shao, Qihui
    Li, Rendong
    Qiu, Juan
    Han, Yifei
    Han, Dongfeng
    Chen, MiaoMiao
    Chi, Hong
    PADDY AND WATER ENVIRONMENT, 2023, 21 (02) : 243 - 261
  • [32] Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using Sentinel-1 Backscatter Time Series
    Song, Yang
    Wang, Jing
    REMOTE SENSING, 2019, 11 (04)
  • [33] A Novel Phenology-Based Index for Plastic-Mulched Farmland Extraction and Its Application in a Typical Agricultural Region of China Using Sentinel-2 Imagery and Google Earth Engine
    Dong, Xinyu
    Li, Jiaguo
    Xu, Ning
    Lei, Junjie
    He, Zhen
    Zhao, Limin
    LAND, 2024, 13 (11)
  • [34] Mapping Ratoon Rice Fields Based on SAR Time Series and Phenology Data in Cloudy Regions
    Li, Yuechen
    Zhao, Rongkun
    Wang, Yue
    REMOTE SENSING, 2024, 16 (15)
  • [35] Mapping Diverse Paddy Rice Cropping Patterns in South China Using Harmonized Landsat and Sentinel-2 Data
    Hu, Jie
    Chen, Yunping
    Cai, Zhiwen
    Wei, Haodong
    Zhang, Xinyu
    Zhou, Wei
    Wang, Cong
    You, Liangzhi
    Xu, Baodong
    REMOTE SENSING, 2023, 15 (04)
  • [36] Mapping Rice Paddy Based on Machine Learning with Sentinel-2 Multi-Temporal Data: Model Comparison and Transferability
    Zhang, Weichun
    Liu, Hongbin
    Wu, Wei
    Zhan, Linqing
    Wei, Jing
    REMOTE SENSING, 2020, 12 (10)
  • [37] An orchard mapping index and mapping algorithm coupling orchard phenology and green-holding characteristics from time-series sentinel-2 images
    Chen, Riqiang
    Yang, Hao
    Liu, Wenping
    Liu, Miao
    Qi, Ning
    Feng, Haikuan
    Zhang, Chengjian
    Xu, Haifeng
    Yang, Guijun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 226
  • [38] Forest Stand Species Mapping Using the Sentinel-2 Time Series
    Grabska, Ewa
    Hostert, Patrick
    Pflugmacher, Dirk
    Ostapowicz, Katarzyna
    REMOTE SENSING, 2019, 11 (10)
  • [39] Early Crop Mapping Based on Sentinel-2 Time-Series Data and the Random Forest Algorithm
    Wei, Peng
    Ye, Huichun
    Qiao, Shuting
    Liu, Ronghao
    Nie, Chaojia
    Zhang, Bingrui
    Song, Lijuan
    Huang, Shanyu
    REMOTE SENSING, 2023, 15 (13)
  • [40] Crop type mapping in the central part of the North China Plain using Sentinel-2 time series and machine learning
    Luo, Ke
    Lu, Linlin
    Xie, Yanhua
    Chen, Fang
    Yin, Fang
    Li, Qingting
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 205