Hydroxysafflor yellow A attenuates left ventricular remodeling after pressure overload-induced cardiac hypertrophy in rats

被引:29
|
作者
Wang, Jianping [1 ]
Zhang, Qing [1 ]
Mei, Xiuhua [1 ]
Zhang, Xiuzhen [1 ]
机构
[1] Yantai Yuhuangding Hosp, Yantai 264000, Shandong, Peoples R China
关键词
Anti-apoptosis; metalloproteinases; Hydroxysafflor Yellow A; left cardiac remodeling; left ventricular remodeling; MATRIX-METALLOPROTEINASE INHIBITION; ESSENTIAL-HYPERTENSION; DYSFUNCTION; APOPTOSIS; MORBIDITY; BCL-2; MASS;
D O I
10.3109/13880209.2013.805791
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Context: Hydroxysafflor yellow A (HSYA), the main chemical component of the safflower yellow pigments, is used extensively in traditional Chinese medicine for the treatment of cerebrovascular and cardiovascular diseases. Objective: The present study determined the effects of HSYA on left ventricular hypertrophy after pressure overload and investigated the underlying mechanisms. Materials and methods: Cardiac hypertrophy was induced by the ligation of abdominal aorta in male Wistar rats. The rats were then divided into five groups and treated with captopril (100 mg/kg) or HSYA at different doses (0, 10, 20 and 40 mg/kg). Six weeks after treatment, the weight of left ventricle, LVMI (left ventricular mass index) and pathological changes were measured. MMP-2 (metalloproteinase 2) and MMP-9 (metalloproteinase 9) levels were determined by ELISA. Protein expressions of Bcl-2 and Bax were evaluated by immunohistochemistry. Results: HSYA (20, 40 mg/kg) significantly attenuated the increase of LVMI (ventricular weight/body weight) by 13.04 and 30.43% respectively, when compared with the model group. This was associated with the amelioration of pathological lesion, such as cardiac muscle fibers were smaller and the nuclei of cardiomyocytes were lightly stained in animals treated with HSYA (20, 40 mg/kg). In addition, the administration of HSYA at doses of 20 and 40 mg/kg increased the Bcl-2/Bax ratio (1.17 +/- 0.08 and 1.39 +/- 0.07 versus 0.71 +/- 0.06). In addition, the serum MMP-2 and MMP-9 levels were blocked by the treatment at doses of 20 and 40 mg/kg HSYA (MMP-2, 76.1 +/- 9.2 and 65.6 +/- 6.8 versus 82.9 +/- 6.2, ng/ml; MMP-9, 66.6 +/- 4.8 and 57.5 +/- 5.0 versus 83.5 +/- 6.0, ng/ml). Conclusion: These findings indicated that HSYA has beneficial effects on hypertensive ventricular remodeling, which may involve mechanisms of inhibiting cell apoptosis and suppressing metalloproteinases expression.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 50 条
  • [1] Effects of Hawthorn on Cardiac Remodeling and Left Ventricular Dysfunction after 1 Month of Pressure Overload-induced Cardiac Hypertrophy in Rats
    Hyun Seok Hwang
    Barry E. Bleske
    Michael M. J. Ghannam
    Kimber Converso
    Mark W. Russell
    James C. Hunter
    Marvin O. Boluyt
    Cardiovascular Drugs and Therapy, 2008, 22
  • [2] Effects of hawthorn on cardiac remodeling and left ventricular dysfunction after 1 month of pressure overload-induced cardiac hypertrophy in rats
    Hwang, Hyun Seok
    Bleske, Barry E.
    Ghannam, Michael M. J.
    Converso, Kimber
    Russell, Mark W.
    Hunter, James C.
    Boluyt, Marvin O.
    CARDIOVASCULAR DRUGS AND THERAPY, 2008, 22 (01) : 19 - 28
  • [3] Puerarin attenuates pressure overload-induced cardiac hypertrophy
    Yuan, Yuan
    Zong, Jing
    Zhou, Heng
    Bian, Zhou-Yan
    Deng, Wei
    Dai, Jia
    Gan, Hua-Wen
    Yang, Zheng
    Li, Hongliang
    Tang, Qi-Zhu
    JOURNAL OF CARDIOLOGY, 2014, 63 (1-2) : 73 - 81
  • [4] GROWTH HORMONE ATTENUATES MYOCARDIAL FIBROSIS IN RATS WITH CHRONIC PRESSURE OVERLOAD-INDUCED LEFT VENTRICULAR HYPERTROPHY
    Moreira, Vanessa O.
    Pereira, Camila A.
    Silva, Mirella O.
    Felisbino, Sergio L.
    Cicogna, Antonio C.
    Okoshi, Katashi
    Aragon, Flavio F.
    Padovani, Carlos R.
    Okoshi, Marina P.
    Castro, Ana V. B.
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2009, 36 (03): : 325 - 330
  • [5] Evodiamine attenuates pressure overload-induced cardiac hypertrophy
    Li, Fangfang
    Yuan, Yuan
    Zhang, Ning
    Wu, Qingqing
    Li, Jin
    Zhou, Mengqiao
    Yang, Zheng
    Tang, Qizhu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (07): : 10202 - 10213
  • [6] Remodeling of Glucose Metabolism Precedes Pressure Overload-Induced Left Ventricular Hypertrophy: Review of a Hypothesis
    Kundu, Bijoy K.
    Zhong, Min
    Sen, Shiraj
    Davogustto, Giovanni
    Keller, Susanna R.
    Taegtmeyer, Heinrich
    CARDIOLOGY, 2015, 130 (04) : 211 - 220
  • [7] Sepiapterin prevents left ventricular hypertrophy and dilatory remodeling induced by pressure overload in rats
    Yoshioka, Kei
    Otani, Hajime
    Shimazu, Takayuki
    Fujita, Masanori
    Iwasaka, Toshiji
    Shiojima, Ichiro
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2015, 309 (10): : H1782 - H1791
  • [8] Autophagy and pressure overload-induced cardiac hypertrophy
    Zeng, Yong
    Ren, Wei-Qiong
    Wen, Ai-Zhen
    Zhang, Wen
    Fan, Fu-Yuan
    Chen, Ou-Ying
    JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH, 2022, 24 (12) : 1101 - 1108
  • [9] Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation
    Fu, Yong-nan
    Xiao, Han
    Ma, Xiao-wei
    Jiang, Sheng-yang
    Xu, Ming
    Zhang, You-yi
    ACTA PHARMACOLOGICA SINICA, 2011, 32 (07) : 879 - 887
  • [10] Electrophysiologic Remodeling of the Left Ventricle in Pressure Overload-Induced Right Ventricular Failure
    Hardziyenka, Maxim
    Campian, Maria E.
    Verkerk, Arie O.
    Surie, Sulaiman
    van Ginneken, Antoni C. G.
    Hakim, Sara
    Linnenbank, Andre C.
    de Bruin-Bon, H. A. C. M. Rianne
    Beekman, Leander
    van der Plas, Mart N.
    Remme, Carol A.
    van Veen, Toon A. B.
    Bresser, Paul
    de Bakker, Jacques M. T.
    Tan, Hanno L.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 59 (24) : 2193 - 2202