Online Malware Defense using Attack Behavior Model

被引:0
作者
Das, Sanjeev [1 ]
Xiao, Hao [1 ]
Liu, Yang [1 ]
Zhang, Wei [2 ]
机构
[1] Nanyang Technol Univ, Singapore, Singapore
[2] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China
来源
2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2016年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Malware detection is one central topic in cybersecurity, which ideally requires an accurate, efficient and robust (to malware variants) solution. In this work, we propose a hardware-assisted architecture to perform online malware detection with two phases. In the offline phase, we learn the attack model of malware in the form of Deterministic Finite Automaton (DFA). During the runtime phase, we implement a DFA-based detection approach in hardware to check whether a program's execution contains the malicious behavior specified in the DFA. We evaluate our method using real world data of 168 Linux malware samples and 370 benign applications. The results show that our DFA-based approach can recognize malware variants of same family with the potential to detect zero-day attacks. Implemented in hardware, our architecture offers a real time detection with low performance and resource overhead, and more importantly, it cannot be bypassed by malware using sophisticated evasion techniques.
引用
收藏
页码:1322 / 1325
页数:4
相关论文
共 12 条
  • [1] LEARNING REGULAR SETS FROM QUERIES AND COUNTEREXAMPLES
    ANGLUIN, D
    [J]. INFORMATION AND COMPUTATION, 1987, 75 (02) : 87 - 106
  • [2] [Anonymous], 2005, NDSS
  • [3] [Anonymous], 1996, Proceedings of 1996 IEEE Symposium on Security and Privacy, DOI DOI 10.1109/SECPRI.1996.502675
  • [4] [Anonymous], 2003, P NETW DISTR SYST SE
  • [5] Bayer U., 2009, 16 ANN NETW DISTR SY
  • [6] Canali D., 2012, P 2012 INT S SOFTW T, P122, DOI [10.1145/2338965.2336768, DOI 10.1145/2338965.2336768]
  • [7] Das S., 2015, INFORM FORENSICS SEC, VPP, P1
  • [8] Demme J., 2013, ACM SIGARCH computer architecture news, V41, P559, DOI 10.1145/2485922
  • [9] A Survey on Automated Dynamic Malware-Analysis Techniques and Tools
    Egele, Manuel
    Scholte, Theodoor
    Kirda, Engin
    Kruegel, Christopher
    [J]. ACM COMPUTING SURVEYS, 2012, 44 (02)
  • [10] Hardware-Assisted Detection of Malicious Software in Embedded Systems
    Rahmatian, Mehryar
    Kooti, Hessam
    Harris, Ian G.
    Bozorgzadeh, Elaheh
    [J]. IEEE EMBEDDED SYSTEMS LETTERS, 2012, 4 (04) : 94 - 97