When can we improve on sample average approximation for stochastic optimization?

被引:2
作者
Anderson, Edward [1 ,2 ]
Nguyen, Harrison [2 ]
机构
[1] Imperial Coll London, London SW7 2BU, England
[2] Univ Sydney, Sydney, NSW 2006, Australia
关键词
Stochastic optimization; Sample average approximation; Maximum likelihood estimation; Bagging; Kernel density estimation;
D O I
10.1016/j.orl.2020.05.016
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We explore the performance of sample average approximation in comparison with several other methods for stochastic optimization. The methods we evaluate are (a) bagging; (b) kernel density estimation; (c) maximum likelihood estimation; and (d) a Bayesian approach. We use two test sets: first a set of quadratic objective functions allowing different types of interaction between the random component and the univariate decision variable; and second a set of portfolio optimization problems. We make recommendations for effective approaches. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:566 / 572
页数:7
相关论文
共 14 条
[11]  
Ruszczynski A, 2009, MOS-SIAM SER OPTIMIZ, V9, P1, DOI 10.1137/1.9780898718751.ch1
[12]  
Scott DW, 2015, WILEY SER PROBAB ST, P1, DOI 10.1002/9781118575574
[13]  
Stan Development Team, 2019, STAN MOD LANG US GUI
[14]   The sample average approximation method applied to stochastic routing problems: A computational study [J].
Verweij, B ;
Ahmed, S ;
Kleywegt, AJ ;
Nemhauser, G ;
Shapiro, A .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 24 (2-3) :289-333