Edge Collaborative Task Scheduling and Resource Allocation Based on Deep Reinforcement Learning

被引:0
作者
Chen, Tianjian [1 ]
Lyu, Zengwei [1 ,3 ]
Yuan, Xiaohui [2 ]
Wei, Zhenchun [1 ,3 ]
Shi, Lei [1 ,3 ]
Fan, Yuqi [1 ,3 ]
机构
[1] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China
[2] Univ North Texas Denton, Dept Comp Sci & Engn, Denton, TX 76203 USA
[3] Minist Educ, Engn Res Ctr Safety Crit Ind Measurement & Contro, Hefei 230009, Peoples R China
来源
WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT III | 2022年 / 13473卷
关键词
Edge collaborative; Task scheduling; Deep reinforcement learning; Hierarchical server; ALGORITHM; GRAPH;
D O I
10.1007/978-3-031-19211-1_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the development of the sixth generation mobile network (6G), the arrival of the Internet of Everything (IoE) is accelerating. An edge computing network is an important network architecture to realize the IoE. Yet, allocating limited computing resources on the edge nodes is a significant challenge. This paper proposes a collaborative task scheduling framework for the computational resource allocation and task scheduling problems in edge computing. The framework focuses on bandwidth allocation to tasks and the designation of target servers. The problem is described as a Markov decision process (MDP). To minimize the task execution delay and user cost and improve the task success rate, we propose a Deep Reinforcement Learning (DRL) based method. In addition, we explore the problem of the hierarchical hash rate of servers in the network. The simulation results show that our proposed DRL-based task scheduling algorithm outperforms the baseline algorithms in terms of task success rate and system energy consumption. The hierarchical settings of the server's hash rate also show significant benefits in terms of improved task success rate and energy savings.
引用
收藏
页码:598 / 606
页数:9
相关论文
共 50 条
  • [41] DRL-Cloud: Deep Reinforcement Learning-Based Resource Provisioning and Task Scheduling for Cloud Service Providers
    Cheng, Mingxi
    Li, Ji
    Nazarian, Shahin
    2018 23RD ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2018, : 129 - 134
  • [42] Deep reinforcement learning-based joint optimization model for vehicular task offloading and resource allocation
    Li, Zhi-Yuan
    Zhang, Zeng-Xiang
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2024, 17 (04) : 2001 - 2015
  • [43] Deep Reinforcement Learning Based Edge Computing Network Aided Resource Allocation Algorithm for Smart Grid
    Chi, Yingying
    Zhang, Yi
    Liu, Yong
    Zhu, Hailong
    Zheng, Zhe
    Liu, Rui
    Zhang, Peiying
    IEEE ACCESS, 2023, 11 : 6541 - 6550
  • [44] Task Offloading in Cloud-Edge Collaborative Environment Based on Deep Reinforcement Learning and Fuzzy Logic
    Wu, Xiaojun
    Wang, Lulu
    Yuan, Sheng
    Chai, Wei
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 301 - 308
  • [45] RADEAN: A Resource Allocation Model Based on Deep Reinforcement Learning and Generative Adversarial Networks in Edge Computing
    Yu, Zhaoyang
    Zhao, Sinong
    Su, Tongtong
    Liu, Wenwen
    Liu, Xiaoguang
    Wang, Gang
    Wang, Zehua
    Leung, Victor C. M.
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, MOBIQUITOUS 2023, PT I, 2024, 593 : 257 - 277
  • [46] Deep Reinforcement Learning Based Approach for Online Service Placement and Computation Resource Allocation in Edge Computing
    Liu, Tong
    Ni, Shenggang
    Li, Xiaoqiang
    Zhu, Yanmin
    Kong, Linghe
    Yang, Yuanyuan
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (07) : 3870 - 3881
  • [47] Federated Learning for Online Resource Allocation in Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Zheng, Jingjing
    Li, Kai
    Mhaisen, Naram
    Ni, Wei
    Tovar, Eduardo
    Guizani, Mohsen
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [48] Deep Reinforcement Learning based Reliability-aware Resource Placement and Task Offloading in Edge Computing
    Liang, Jingyu
    Feng, Zihan
    Gao, Han
    Chen, Ying
    Huang, Jiwei
    Truong, Hong-Linh
    2024 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, ICWS 2024, 2024, : 697 - 706
  • [49] Snake swarm optimization-based deep reinforcement learning for resource allocation in edge computing environment
    Kaliraj, S.
    Sivakumar, V.
    Premkumar, N.
    Vatchala, S.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (18)
  • [50] Deep Reinforcement Learning Based Resource Allocation for Fault Detection with Cloud Edge Collaboration in Smart Grid
    Li, Qiyue
    Zhu, Yadong
    Ding, Jinjin
    Li, Weitao
    Sun, Wei
    Ding, Lijian
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2024, 10 (03): : 1220 - 1230