Bright-type and dark-type vector solitons of the (2+1)-dimensional spatially modulated quintic nonlinear Schrodinger equation in nonlinear optics and Bose-Einstein condensate

被引:3
|
作者
Wu, Hong-Yu [1 ]
Jiang, Li-Hong [1 ]
机构
[1] Lishui Univ, Coll Engn & Design, Lishui 323000, Zhejiang, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2018年 / 133卷 / 03期
基金
中国国家自然科学基金;
关键词
LOCALIZED STRUCTURES; VORTEX SOLITONS; MULTIPOLE; WAVE;
D O I
10.1140/epjp/i2018-11959-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a (2 + 1)-dimensional N-coupled quintic nonlinear Schrodinger equation with spatially modulated nonlinearity and transverse modulation in nonlinear optics and Bose-Einstein condensate, and obtain bright-type and dark-type vector multipole as well as vortex soliton solutions. When the modulation depth q is fixed as 0 and 1, we can construct vector multipole and vortex solitons, respectively. Based on these solutions, we investigate the form and phase characteristics of vector multipole and vortex solitons.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Dark solitons interaction for a (2+1)-dimensional nonlinear Schrodinger equation in the Heisenberg ferromagnetic spin chain
    Zhao, Xue-Hui
    Tian, Bo
    Liu, De-Yin
    Wu, Xiao-Yu
    Chai, Jun
    Guo, Yong-Jiang
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 587 - 595
  • [22] Dark-bright optical solitary waves and modulation instability analysis with (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (03) : 393 - 402
  • [23] Dark solitons and rouge waves for a (2+1)-dimensional Gross-Pitaevskii equation with time-varying trapping potential in the Bose-Einstein condensate
    Wu, Xiao-Yu
    Tian, Bo
    Zhen, Hui-Ling
    Liu, Lei
    Shan, Wen-Rui
    JOURNAL OF MODERN OPTICS, 2016, 63 (21) : 2332 - 2338
  • [24] Optical solitons of (2+1)-dimensional nonlinear Schrodinger equation involving linear and nonlinear effects
    Matinfar, M.
    Hosseini, K.
    OPTIK, 2021, 228
  • [25] Asymptotic reductions of two coupled (2+1)-dimensional nonlinear Schrodinger equations: application to Bose-Einstein condensates
    Aguero, M.
    Frantzeskakis, D. J.
    Kevrekidis, P. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (24): : 7705 - 7718
  • [26] The (2+1)-dimensional hyperbolic nonlinear Schrodinger equation and its optical solitons
    Baleanu, Umitru
    Hosseini, Kamyar
    Salahshour, Soheil
    Sadri, Khadijeh
    Mirzazadeh, Mohammad
    Park, Choonkil
    Ahmadian, Ali
    AIMS MATHEMATICS, 2021, 6 (09): : 9568 - 9581
  • [27] Dynamics of optical solitons in the (2+1)-dimensional chiral nonlinear Schrodinger equation
    Tetchoka-Manemo, Cedric
    Tala-Tebue, Eric
    Inc, Mustafa
    Ejuh, Geh Wilson
    Kenfack-Jiotsa, Aurelien
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (05)
  • [28] Chiral solitons of (2+1)-dimensional stochastic chiral nonlinear Schrodinger equation
    Arshed, Saima
    Raza, Nauman
    Javid, Ahmad
    Baskonus, Haci Mehmet
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (10)
  • [29] Stable and unstable vector dark solitons of coupled nonlinear Schrodinger equations: Application to two-component Bose-Einstein condensates
    Brazhnyi, VA
    Konotop, VV
    PHYSICAL REVIEW E, 2005, 72 (02):
  • [30] Symmetry and conservation laws of the (2+1)-dimensional nonlinear Schrodinger-type equation
    Serikbayev, Nurzhan
    Saparbekova, Akbota
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (10)