Domain representability of retracts

被引:3
作者
Onal, Suleyman [1 ]
Vural, Cetin [2 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[2] Gazi Univ, Fen Fak Matemat Bolumu, TR-06500 Ankara, Turkey
关键词
Subcompact space; Domain representable; Retract; Function space; C-P(X);
D O I
10.1016/j.topol.2015.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every retract of a domain representable space is domain representable. Consequently, we obtained that if C-p (X) is a countable union of its closed subcompact subspaces then X is discrete. This solves Question 7 in [5]. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
[21]   A characterization of retracts in certain Fraisse limits [J].
Dolinka, Igor .
MATHEMATICAL LOGIC QUARTERLY, 2012, 58 (1-2) :46-54
[22]   Retractions and retracts of free topological monoids [J].
Forys, W .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2006, 83 (01) :21-26
[23]   Retracts that are kernels of locally nilpotent derivations [J].
Dayan Liu ;
Xiaosong Sun .
Czechoslovak Mathematical Journal, 2022, 72 :191-199
[24]   On nonconvex retracts in normed linear spaces [J].
Zhang, Guowei ;
Li, Pengcheng .
CARPATHIAN JOURNAL OF MATHEMATICS, 2016, 32 (02) :259-264
[25]   Test elements, retracts and automorphic orbits [J].
Gong, Sheng-Jun ;
Yu, Jie-Tai .
JOURNAL OF ALGEBRA, 2008, 320 (07) :3062-3068
[26]   Mobius manifolds, monoids, and retracts of topological groups [J].
Hofmann, Karl H. ;
Martin, John R. .
SEMIGROUP FORUM, 2015, 90 (02) :301-316
[27]   Representing subalgebras as retracts of finite subdirect powers [J].
Kearnes, Keith A. ;
Rasstrigin, Alexander .
ALGEBRA UNIVERSALIS, 2020, 81 (04)
[28]   MONOUNARY ALGEBRAS WITH SAME QUASIORDERS OR RETRACTS [J].
Jakubikova-Studenovska, Danica ;
Petrejcikova, Maria ;
Pocs, Jozef .
DEMONSTRATIO MATHEMATICA, 2011, 44 (03) :481-496
[29]   Dugundji extenders and retracts on generalized ordered spaces [J].
Gruenhage, G ;
Hattori, Y ;
Ohta, H .
FUNDAMENTA MATHEMATICAE, 1998, 158 (02) :147-164
[30]   Representing subalgebras as retracts of finite subdirect powers [J].
Keith A. Kearnes ;
Alexander Rasstrigin .
Algebra universalis, 2020, 81