A processing method with high efficiency for low density polyethylene nanofibers reinforced by aligned carbon nanotubes via nanolayer coextrusion

被引:31
作者
Cheng, Junfeng [1 ]
Pu, Hongting [1 ]
Du, Jiang [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Shanghai 201804, Peoples R China
关键词
Coextrusion; Multi-walled carbon nanotubes; Low density polyethylene; Nanofiber; Alignment; COMPOSITE FIBERS; POLY(EPSILON-CAPROLACTONE) FIBERS; MECHANICAL-PROPERTIES; AQUEOUS-SOLUTION; NANOCOMPOSITES; FABRICATION; EXTRUSION; SCAFFOLD;
D O I
10.1016/j.polymer.2017.01.026
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A method for large-scale processing of low density polyethylene (LDPE) nanofibers reinforced by aligned multi-walled carbon nanotubes (MWCNTs) is achieved via nanolayer coextrusion. The morphology and nano-sized diameter of the nanofibers are observed on scanning electron microscope. The prioritized alignment and dispersion of MWCNTs along the fiber axis are determined by transmission electron microscopy, polarized Raman spectra, and high resolution optical microscopy. The dispersion of MWCNTs in nanofibers is better than that in homologous micron-fibers. In addition, MWCNTs can promote the crystallization of LDPE in varying degrees which depend on the fiber diameter and MWCNTs content. As a result of the alignment of MWCNTs, the nanofibers exhibit enhanced mechanical properties. The tensile strength of LDPE(1 wff, MWCNTs) nanofibers is more than twice of pure nanofibers (without MWCNTs). The volume resistivity of the LDPE(MWCNTs) nanofiber mats containing 9 wt% MWCNTs can be reduced to 100 Omega cm. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 28 条
[1]   Reduction-Responsive Sheddable Carbon Nanotubes Dispersed in Aqueous Solution [J].
An, So Young ;
Sun, Shuhui ;
Oh, Jung Kwon .
MACROMOLECULAR RAPID COMMUNICATIONS, 2016, 37 (08) :705-710
[2]   Reinforcement of polymers with carbon nanotubes:: The role of nanotube surface area [J].
Cadek, M ;
Coleman, JN ;
Ryan, KP ;
Nicolosi, V ;
Bister, G ;
Fonseca, A ;
Nagy, JB ;
Szostak, K ;
Béguin, F ;
Blau, WJ .
NANO LETTERS, 2004, 4 (02) :353-356
[3]  
Cheng J.F., 2016, CHIN J POLYM SCI, V34, P1
[4]   A novel method for fabricating continuous polymer nanofibers [J].
Du, Jiang ;
Liu, Daobin ;
Chen, Siqi ;
Wan, Decheng ;
Pu, Hongting .
POLYMER, 2016, 102 :209-213
[5]   Influence of Chain Branching and Molecular Weight on Melt Rheology and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites [J].
Francisco Vega, Juan ;
da Silva, Yudith ;
Vicente-Alique, Ernesto ;
Nunez-Ramirez, Rafael ;
Trujillo, Mariselis ;
Luisa Arnal, Maria ;
Mueller, Alejandro J. ;
Dubois, Philippe ;
Martinez-Salazar, Javier .
MACROMOLECULES, 2014, 47 (16) :5668-5681
[6]   Preparation, morphology, and mechanical properties of carbon nanotube anchored polymer nanofiber composite [J].
Gao, Jiefeng ;
Li, Wan ;
Shi, Hengchong ;
Hu, Mingjun ;
Li, Robert K. Y. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 92 :95-102
[7]   Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution [J].
Han, Youngkyu ;
Ahn, Suk-Kyun ;
Zhang, Zhe ;
Smith, Gregory S. ;
Do, Changwoo .
MACROMOLECULES, 2015, 48 (11) :3475-3480
[8]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[9]   Processing, structure and properties of poly(ether ketone) grafted few wall carbon nanotube composite fibers [J].
Jain, Rahul ;
Choi, Young Ho ;
Liu, Yaodong ;
Minus, Marilyn L. ;
Chae, Han Gi ;
Kumar, Satish ;
Baek, Jong-Beom .
POLYMER, 2010, 51 (17) :3940-3947
[10]   Toward a Tunable Fibrous Scaffold: Structural Development during Uniaxial Drawing of Coextruded Poly(ε-caprolactone) Fibers [J].
Jordan, Alex M. ;
Korley, LaShanda T. J. .
MACROMOLECULES, 2015, 48 (08) :2614-2627