Ag3PO4 photocatalyst: Hydrothermal preparation and enhanced O2 evolution under visible-light irradiation

被引:60
作者
Guan, Xiangjiu [1 ]
Shi, Jinwen [1 ]
Guo, Liejin [1 ]
机构
[1] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Ag3PO4; Photocatalysis; O-2; Hydrothermal reaction; HYDROGEN-PRODUCTION; POWDERED PHOTOCATALYSTS; RECENT PROGRESS; WATER; DRIVEN; ENERGY; SEMICONDUCTOR; EFFICIENT; FACILE; FUEL;
D O I
10.1016/j.ijhydene.2013.07.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Visible-light-driven semiconducting photocatalysts of Ag3PO4 were prepared by a hydrothermal method, and were optimized by adjusting reaction conditions, i.e., temperature, pH of reaction solution, concentration of feedstock, and time of hydrothermal process. The obtained photocatalysts were then systematically characterized by different instruments, such as XRD, UV-vis, FESEM, and BET, to reveal the physicochemical properties. Furthermore, activities of photocatalysts for visible-light-driven O-2 evolution were evaluated, demonstrating that the photocatalytic activity of Ag3PO4 prepared by hydrothermal reaction (initial rate of O-2 evolution, 1156 mu mol g(-1) h(-1)) was more than two times as that of sample prepared by room-temperature reaction (initial rate of O-2 evolution, 533 mu mol g h(-1)), which could be attributed to its better ability to utilize visible light and more regulated morphology. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11870 / 11877
页数:8
相关论文
共 50 条
[1]   Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 -/I- [J].
Abe, R ;
Sayama, K ;
Sugihara, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (33) :16052-16061
[2]   Potential importance of hydrogen as a future solution to environmental and transportation problems [J].
Balat, Mustafa .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (15) :4013-4029
[3]   Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities [J].
Bi, Yingpu ;
Ouyang, Shuxin ;
Cao, Junyu ;
Ye, Jinhua .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (21) :10071-10075
[4]   Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties [J].
Bi, Yingpu ;
Ouyang, Shuxin ;
Umezawa, Naoto ;
Cao, Junyu ;
Ye, Jinhua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (17) :6490-6492
[5]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[6]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[7]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[8]   Highly efficient visible-light-driven photocatalytic hydrogen production from water using Cd0.5Zn0.5S/TNTs (titanate nanotubes) nanocomposites without noble metals [J].
Chen, Yubin ;
Guo, Liejin .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (15) :7507-7514
[9]   Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J].
Cushing, BL ;
Kolesnichenko, VL ;
O'Connor, CJ .
CHEMICAL REVIEWS, 2004, 104 (09) :3893-3946
[10]  
DAWSON WJ, 1988, AM CERAM SOC BULL, V67, P1673