When the kernel of a complete hereditary cotorsion pair is the additive closure of a tilting module

被引:6
作者
Wang, Jian [1 ]
Li, Yunxia [1 ]
Hu, Jiangsheng [2 ]
机构
[1] Jinling Inst Technol, Coll Sci, Nanjing 211169, Jiangsu, Peoples R China
[2] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
关键词
Cotorsion pair; Additive closure; Strongly Gorenstein projective module; Tilting module; COHERENT RINGS; GORENSTEIN; CONJECTURE; FINITENESS;
D O I
10.1016/j.jalgebra.2019.03.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study when the kernel of a complete hereditary cotorsion pair is the additive closure of a tilting module. Applications go in three directions. The first is to characterize when the little finitistic dimension is finite. The second is to obtain equivalent formulations for a Wakamatsu tilting module to be a tilting module. The third is to give some new characterizations of Gorenstein rings. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 113
页数:20
相关论文
共 43 条
[1]   Tilting preenvelopes and cotilting precovers [J].
Angeleri Hugel, L ;
Tonolo, A ;
Trlifaj, J .
ALGEBRAS AND REPRESENTATION THEORY, 2001, 4 (02) :155-170
[2]  
Angeleri Hugel LA, 2001, FORUM MATH, V13, P239
[3]  
Angeleri Hugel L, 2006, FORUM MATH, V18, P211
[4]   Tilting theory and the finitistic dimension conjectures [J].
Angeleri-Hügel, L ;
Trlifaj, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) :4345-4358
[5]  
[Anonymous], 1995, REPRESENTATION THEOR, DOI DOI 10.1017/CBO9780511623608
[6]   Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension [J].
Avramov, LL ;
Martsinkovsky, A .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :393-440
[7]  
Bass H., 1960, T AM MATH SOC, V95, P466, DOI 10.1090/S0002-9947-1960-0157984-8
[8]  
Bass H., 1963, Math. Z, V82, P8
[9]   A characterization of n-cotilting and n-tilting modules [J].
Bazzoni, S .
JOURNAL OF ALGEBRA, 2004, 273 (01) :359-372
[10]   Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2005, 288 (01) :137-211