Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation

被引:40
作者
Ma, Wen-Xiu [1 ,2 ]
Xia, Tiecheng [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
N-SOLITON SOLUTIONS; COMPLEXITON SOLUTIONS; GRAMMIAN SOLUTIONS; BKP EQUATIONS; KP; FORM;
D O I
10.1088/0031-8949/87/05/055003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A one-parameter class of Pfaffian extensions is made for a (3 + 1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation by the Pfaffianization procedure. Wronski-type Pfaffian and Gramm-type Pfaffian solutions of the resulting Pfaffianized bilinear systems of the generalized KP equation are constructed. Under a dimensional reduction, our results yield a class of Pfaffianized bilinear systems for the KP equation, which contains the standard Pfaffianized bilinear KP system as a particular example. Two kinds of Pfaffian identities provide the basis for our analysis.
引用
收藏
页数:8
相关论文
共 36 条
[1]  
[Anonymous], 1973, Combinatorics and Renormalisation in Quantum Field Theory
[2]  
Darvishi M. T., 2011, American Journal of Computational and Applied Mathematics, V1, P41, DOI [10.5923/j.ajcam.20110102.08, DOI 10.5923/J.AJCAM.20110102.08]
[3]   Pfaffianization of the discrete KP equation [J].
Gilson, CR ;
Nimmo, JJC ;
Tsujimoto, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10569-10575
[4]   Pfaffianization of the Davey-Stewartson equations [J].
Gilson, CR ;
Nimmo, JJC .
THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 128 (01) :870-882
[5]  
Hietarinta J., 2005, PHYS AUC, V15, P31
[7]   HIERARCHIES OF COUPLED SOLITON-EQUATIONS .1. [J].
HIROTA, R ;
OHTA, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (03) :798-809
[8]   NEW FORM OF BACKLUND TRANSFORMATIONS AND ITS RELATION TO INVERSE SCATTERING PROBLEM [J].
HIROTA, R .
PROGRESS OF THEORETICAL PHYSICS, 1974, 52 (05) :1498-1512
[9]  
Hirota R., 2004, The Direct Method in Soliton Theory
[10]   Pfaffianization of the two-dimensional Toda lattice [J].
Hu, XB ;
Zhao, JX ;
Tam, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) :256-261