One-parameter family of solitons from minimal surfaces

被引:2
作者
Dey, Rukmini [1 ]
Kumar, Pradip [1 ]
机构
[1] Harish Chandra Res Inst, Sch Math, Allahabad 211019, Uttar Pradesh, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2013年 / 123卷 / 01期
关键词
Minimal surfaces; Born-Infeld solitons;
D O I
10.1007/s12044-013-0115-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss a one parameter family of complex Born-Infeld solitons arising from a one parameter family of minimal surfaces. The process enables us to generate a new solution of the B I equation from a given complex solution of a special type (which are abundant). We illustrate this with many examples. We find that the action or the energy of this family of solitons remains invariant in this family and find that the well-known Lorentz symmetry of the B-I equations is responsible for it.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 5 条
[1]   The Weierstrass-Enneper representation using hodographic coordinates on a minimal surface [J].
Dey, R .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2003, 113 (02) :189-193
[2]  
Do Carmo M.P., 2016, Differential Geometry of Curves and Surfaces: Revised and Updated, V2nd
[3]  
Nitsche J. C. C., 1989, LECT MINIMAL SURFACE, V1
[4]  
Osserman R., 1986, A Survey on Minimal Surfaces
[5]  
Whitham GB., 1999, LINEAR NONLINEAR WAV, P485, DOI [10.1002/9781118032954, DOI 10.1002/9781118032954]