Optimal M-estimation in high-dimensional regression

被引:57
作者
Bean, Derek [1 ]
Bickel, Peter J. [1 ]
El Karoui, Noureddine [1 ]
Yu, Bin [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
robust regression; prox function;
D O I
10.1073/pnas.1307845110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider, in the modern setting of high-dimensional statistics, the classic problem of optimizing the objective function in regression using M-estimates when the error distribution is assumed to be known. We propose an algorithm to compute this optimal objective function that takes into account the dimensionality of the problem. Although optimality is achieved under assumptions on the design matrix that will not always be satisfied, our analysis reveals generally interesting families of dimension-dependent objective functions.
引用
收藏
页码:14563 / 14568
页数:6
相关论文
共 15 条
  • [1] [Anonymous], 1946, MATH METHODS STAT
  • [2] [Anonymous], 1997, PRINCETON LANDMARKS
  • [3] Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
  • [4] A NEW ENTROPY POWER INEQUALITY
    COSTA, MHM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (06) : 751 - 760
  • [5] El Karoui N, 2012, 811 U CAL DEP STAT
  • [6] On robust regression with high-dimensional predictors
    El Karoui, Noureddine
    Bean, Derek
    Bickel, Peter J.
    Lim, Chinghway
    Yu, Bin
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (36) : 14557 - 14562
  • [7] Fisher R.A., 1922, Philos. Trans. R. Soc. A, V222, P309, DOI [10.1098/rsta.1922.0009, DOI 10.1098/RSTA.1922.0009]
  • [8] Hajek J., 1972, P 6 BERKELEY S MATH, V1, P175
  • [9] 1972 WALD MEMORIAL LECTURES - ROBUST REGRESSION - ASYMPTOTICS, CONJECTURES AND MONTE-CARLO
    HUBER, PJ
    [J]. ANNALS OF STATISTICS, 1973, 1 (05) : 799 - 821
  • [10] Ibragimov I. A., 1956, Teor. Veroyatnost. i Primenen., V1, P283