Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide

被引:49
作者
Apuzzo, A. [1 ]
Fevrier, M. [1 ]
Salas-Montiel, R. [1 ]
Bruyant, A. [1 ]
Chelnokov, A. [2 ]
Lerondel, G. [1 ]
Dagens, B. [3 ,4 ]
Blaize, S. [1 ]
机构
[1] Univ Technol Troyes, Lab Nanotechnol & Instrumentat Opt, CNRS UMR 6279, F-10004 Troyes, France
[2] CEA, DOPT, F-38054 Grenoble 9, France
[3] Univ Paris 11, Inst Elect Fondamentale, UMR 8622, F-91405 Orsay, France
[4] CNRS, F-91405 Orsay, France
关键词
Optical near field microscopy; surface plasmon polariton; localized surface plasmon; silicon photonics; plasmonics; integrated optics; ELECTROMAGNETIC ENERGY-TRANSPORT; ENHANCED RAMAN-SCATTERING; OPTICAL MICROSCOPE; SINGLE-MOLECULE; PHASE; METAMATERIALS; LOCALIZATION; NANOCIRCUITS; RESOLUTION; AMPLITUDE;
D O I
10.1021/nl304164y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present near-field measurements of transverse plasmonic wave propagation in a chain of gold elliptical nanocylinders fed by a silicon refractive waveguide at optical telecommunication wavelengths. Eigenmode amplitude and phase imaging by apertureless scanning near-field optical microscopy allows us to measure the local out-of-plane electric field components and to reveal the exact nature of the excited localized surface plasmon resonances. Furthermore, the coupling mechanism between subsequent metal nanoparticles along the chain is experimentally analyzed by spatial Fourier transformation on the complex near-field cartography, giving a direct experimental proof of plasmonic Bloch mode propagation along array of localized surface plasmons. Our work demonstrates the possibility to characterize multielement plasmonic nanostructures coupled to a photonic waveguide with a spatial resolution of less than 30 nm. This experimental work constitutes a prerequisite for the development of integrated nanophotonic devices.
引用
收藏
页码:1000 / 1006
页数:7
相关论文
共 44 条
[1]  
Abbe E., 1873, Archiv f ur Mikroskopische Anatomie, V9, P413, DOI DOI 10.1007/BF02956173
[2]   Near-field measurement of amplitude and phase in silicon waveguides with liquid cladding [J].
Ayache, Maurice ;
Nezhad, Maziar P. ;
Zamek, Steve ;
Abashin, Maxim ;
Fainman, Yeshaiahu .
OPTICS LETTERS, 2011, 36 (10) :1869-1871
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]  
Betzig E, 1996, NATO ASI SERIES E, V242
[5]   Apertureless scanning near-field optical microscopy for ion exchange channel waveguide characterization [J].
Blaize, S ;
Aubert, S ;
Bruyant, A ;
Bachelot, R ;
Lerondel, G ;
Royer, P ;
Broquin, JE ;
Minier, V .
JOURNAL OF MICROSCOPY-OXFORD, 2003, 209 :155-161
[6]   Near-field characterization of photonic crystal waveguides [J].
Bozhevolnyi, Sergey I. ;
Kuipers, Laurens .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2006, 21 (05) :R1-R16
[7]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[8]   Channel plasmon-polariton guiding by subwavelength metal grooves [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Ebbesen, TW .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[9]   Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit [J].
Brongersma, ML ;
Hartman, JW ;
Atwater, HA .
PHYSICAL REVIEW B, 2000, 62 (24) :16356-16359
[10]   Elements for Plasmonic Nanocircuits with Three-Dimensional Slot Waveguides [J].
Cai, Wenshan ;
Shin, Wonseok ;
Fan, Shanhui ;
Brongersma, Mark L. .
ADVANCED MATERIALS, 2010, 22 (45) :5120-+