Comparative Analysis of Cell Metabolic Activity Sensing by Escherichia coli rrnB P1-lux and Cd Responsive-Lux Biosensors: Time-Resolved Experiments and Mechanistic Modelling

被引:4
|
作者
Delatour, Eva [1 ]
Pagnout, Christophe [1 ]
Zaffino, Marie L. [1 ]
Duval, Jerome F. L. [2 ]
机构
[1] Univ Lorraine, LIEC Lab Interdisciplinaire Environm Continentaux, UMR7360, CNRS, Campus Bridoux, F-57070 Metz, France
[2] Univ Lorraine, UMR7360, LIEC, CNRS, F-54501 Vandoeuvre Les Nancy, France
来源
BIOSENSORS-BASEL | 2022年 / 12卷 / 09期
关键词
bioluminescence; whole-cell biosensors; metals; bioavailability; medium nutritional quality; signal dependence on time; METAL SPECIATION DYNAMICS; PARTITIONING DYNAMICS; BIOAVAILABILITY; BIOINTERPHASES; NANOPARTICLES; COMPLEXES; DEPLETION; TOXICITY; SENSORS; SYSTEMS;
D O I
10.3390/bios12090763
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Whole-cell bacterial sensors are used in medical/environmental applications to detect chemicals, and to assess medium toxicity or stress. Non-specific constitutive biosensors generally serve the latter purpose, whereas chemical detection is performed with biosensors involving a specific chemical-inducible promoter. Herein, we show that functioning principles of specific and non-specific whole-cell biosensors are not exclusive as both can probe modulations of cell metabolic activity under stressing conditions. The demonstration is based on (i) time-resolved measurements of bioluminescence produced by constitutive rrnB P1-luxCDABE Escherichia coli biosensor in media differing with respect to carbon source, (ii) theoretical reconstruction of the measured signals using a here-reported theory for bioluminescence generated by constitutive cells, (iii) comparison between time-dependent cell photoactivity (reflecting metabolic activity) retrieved by theory with that we reported recently for cadmium-inducible PzntA-luxCDABE E. coli in media of similar compositions. Whereas signals of constitutive and non-constitutive biosensors differ in terms of shape, amplitude and peak number depending on nutritional medium conditions, analysis highlights the features shared by their respective cell photoactivity patterns mediated by the interplay between stringent response and catabolite repressions. The work advocates for the benefits of a theoretical interpretation for the time-dependent response of biosensors to unravel metabolic and physicochemical contributions to the bioluminescence signal.
引用
收藏
页数:24
相关论文
empty
未找到相关数据