A Degree Sum Condition Concerning the Connectivity and the Independence Number of a Graph

被引:8
作者
Ozeki, Kenta [1 ]
Yamashita, Tomoki [2 ]
机构
[1] Keio Univ, Dept Math, Yokohama, Kanagawa 2230061, Japan
[2] Kitasato Univ, Coll Liberal Arts & Sci, Sagamihara, Kanagawa 2288555, Japan
关键词
Degree sum; Connectivity; Independence number; Cyclable;
D O I
10.1007/s00373-008-0802-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and S. V(G). We denote by a(S) the maximum number of pairwise nonadjacent vertices in S. For x, y epsilon V(G), the local connectivity kappa(x, y) is defined to be the maximum number of internally-disjoint paths connecting x and y in G. We define kappa(S) = min{kappa(x, y) : x, y epsilon S, x not equal y}. In this paper, we show that if kappa(S) >= 3 and Sigma(4)(i=1) dG(x(i)) >= | V(G)|+ kappa(S)+ alpha(S) - 1 for every independent set {x(1), x(2), x(3), x(4)} subset of S, then G contains a cycle passing through S. This degree condition is sharp and this gives a new degree sum condition for a 3-connected graph to be hamiltonian.
引用
收藏
页码:469 / 483
页数:15
相关论文
共 11 条
[1]   A GENERALIZATION OF A RESULT OF HAGGKVIST AND NICOGHOSSIAN [J].
BAUER, D ;
BROERSMA, HJ ;
VELDMAN, HJ ;
RAO, L .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) :237-243
[2]  
Bondy J., 1995, Handbook of Combinatorics, V1, P5
[3]   REMARK ON 2 SUFFICIENT CONDITIONS FOR HAMILTON CYCLES [J].
BONDY, JA .
DISCRETE MATHEMATICS, 1978, 22 (02) :191-193
[4]   Cycles through subsets with large degree sums [J].
Broersma, H ;
Li, H ;
Li, JP ;
Tian, F ;
Veldman, HJ .
DISCRETE MATHEMATICS, 1997, 171 (1-3) :43-54
[5]  
Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[6]  
Harkat-Benhamdine A, 2000, J GRAPH THEOR, V34, P191, DOI 10.1002/1097-0118(200007)34:3<191::AID-JGT1>3.0.CO
[7]  
2-V
[8]   Two sufficient conditions for dominating cycles [J].
Lu, M ;
Liu, HQ ;
Tian, F .
JOURNAL OF GRAPH THEORY, 2005, 49 (02) :135-150
[9]  
Ore O., 1960, AM MATH MONTHLY, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]
[10]   CYCLES THROUGH PRESCRIBED VERTICES WITH LARGE DEGREE SUM [J].
OTA, K .
DISCRETE MATHEMATICS, 1995, 145 (1-3) :201-210