Regulation of the p53 response and its relationship to cancer

被引:227
作者
Meek, David W. [1 ]
机构
[1] Univ Dundee, Div Canc Res, Jacqui Wood Canc Ctr, Ninewells Hosp, Dundee DD1 9SY, Scotland
关键词
MDM2; p53; post-translational modification; signalling; tumour suppressor; DNA-DAMAGE-RESPONSE; NF-KAPPA-B; ONCOGENE-INDUCED SENESCENCE; TUMOR-SUPPRESSOR PROTEIN; CELL-CYCLE ARREST; MDM2; E3; LIGASE; MUTANT P53; IN-VIVO; ACTIVATES P53; POSTTRANSLATIONAL MODIFICATIONS;
D O I
10.1042/BJ20150517
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
引用
收藏
页码:325 / 346
页数:22
相关论文
共 294 条
[1]   A Mutant-p53/Smad Complex Opposes p63 to Empower TGFβ-Induced Metastasis [J].
Adorno, Maddalena ;
Cordenonsi, Michelangelo ;
Montagner, Marco ;
Dupont, Sirio ;
Wong, Christine ;
Hann, Byron ;
Solari, Aldo ;
Bobisse, Sara ;
Rondina, Maria Beatrice ;
Guzzardo, Vincenza ;
Parenti, Anna R. ;
Rosato, Antonio ;
Bicciato, Silvio ;
Balmain, Allan ;
Piccolo, Stefano .
CELL, 2009, 137 (01) :87-98
[2]   p53: The barrier to cancer stem cell formation [J].
Aloni-Grinstein, Ronit ;
Shetzer, Yoav ;
Kaufman, Tom ;
Rotter, Varda .
FEBS LETTERS, 2014, 588 (16) :2580-2589
[3]  
Anderson C. W., 2010, HDB CELL SIGNALING, P237
[4]   Post-translational modifications and activation of p53 by genotoxic stresses [J].
Appella, E ;
Anderson, CW .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (10) :2764-2772
[5]   Requirement of the ATM/p53 Tumor Suppressor Pathway for Glucose Homeostasis [J].
Armata, Heather L. ;
Golebiowski, Diane ;
Jung, Dae Young ;
Ko, Hwi Jin ;
Kim, Jason K. ;
Sluss, Hayla K. .
MOLECULAR AND CELLULAR BIOLOGY, 2010, 30 (24) :5787-5794
[6]   p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease [J].
Bae, BI ;
Xu, H ;
Igarashi, S ;
Fujimuro, M ;
Agrawal, N ;
Taya, Y ;
Hayward, SD ;
Moran, TH ;
Montell, C ;
Ross, CA ;
Snyder, SH ;
Sawa, A .
NEURON, 2005, 47 (01) :29-41
[7]   Expression of p53 Protein Phosphorylated at Serine 20 and Serine 392 in Malignant and Benign Ovarian Neoplasms Correlation With Clinicopathological Parameters of Tumors [J].
Bar, Julia K. ;
Slomska, Iwona ;
Rabczynki, Jerzy ;
Noga, Leszek ;
Grybos, Marian .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2009, 19 (08) :1322-1328
[8]   Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases [J].
Barlev, NA ;
Liu, L ;
Chehab, NH ;
Mansfield, K ;
Harris, KG ;
Halazonetis, TD ;
Berger, SL .
MOLECULAR CELL, 2001, 8 (06) :1243-1254
[9]   Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints [J].
Bartkova, Jirina ;
Rezaei, Nousin ;
Liontos, Michalis ;
Karakaidos, Panagiotis ;
Kletsas, Dimitris ;
Issaeva, Natalia ;
Vassiliou, Leandros-Vassilios F. ;
Kolettas, Evangelos ;
Niforou, Katerina ;
Zoumpourlis, Vassilis C. ;
Takaoka, Munenori ;
Nakagawa, Hiroshi ;
Tort, Frederic ;
Fugger, Kasper ;
Johansson, Fredrik ;
Sehested, Maxwell ;
Andersen, Claus L. ;
Dyrskjot, Lars ;
Orntoft, Torben ;
Lukas, Jiri ;
Kittas, Christos ;
Helleday, Thomas ;
Halazonetis, Thanos D. ;
Bartek, Jiri ;
Gorgoulis, Vassilis G. .
NATURE, 2006, 444 (7119) :633-637
[10]   COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system [J].
Bech-Otschir, D ;
Kraft, R ;
Huang, XH ;
Henklein, P ;
Kapelari, B ;
Pollmann, C ;
Dubiel, W .
EMBO JOURNAL, 2001, 20 (07) :1630-1639