Cytochrome c oxidase biogenesis:: New levels of regulation

被引:131
作者
Fontanesi, Flavia [1 ]
Soto, Ileana C. [2 ]
Barrientos, Antoni [1 ,2 ]
机构
[1] Univ Miami, Miller Sch Med, John T MacDonald Fdn Ctr Med Genet, Dept Neurol, Miami, FL 33136 USA
[2] Univ Miami, Miller Sch Med, John T MacDonald Fdn Ctr Med Genet, Dept Biochem & Mol Biol, Miami, FL 33136 USA
基金
美国国家卫生研究院;
关键词
mitochondria; cytochrome c oxidase; cytochrome c; F1F0-ATPase; Cox1p translational regulation;
D O I
10.1002/iub.86
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a multimeric enzyme of dual genetic origin, whose assembly is a complicated and highly regulated process. COX displays a concerted accumulation of its constitutive subunits. Data obtained from studies performed with yeast mutants indicate that most catalytic core unassembled subunits are posttranslationally degraded. Recent data obtained in the yeast Saccharomyces cerevisiae have revealed another contribution to the stoichiometric accumulation of subunits during COX biogenesis targeting subunit 1 or Cox1p. Cox1p is a mitochondrially encoded catalytic subunit of COX which acts as a seed around which the full complex is assembled. A regulatory mechanism exists by which Cox1p synthesis is controlled by the availability of its assembly partners. The unique properties of this regulatory mechanism offer a means to catalyze multiple-subunit assembly. New levels of COX biogenesis regulation have been recently proposed. For example, COX assembly and stability of the fully assembled enzyme depend on the presence in the mitochondrial compartments of two partners of the oxidative phosphorylation system, the mobile electron carrier cytochrome c and the mitochondrial ATPase. The different mechanisms of regulation of COX assembly are reviewed and discussed. (C) 2008 IUBMB.
引用
收藏
页码:557 / 568
页数:12
相关论文
共 78 条
[1]   Function, structure, and biogenesis of mitochondrial ATP synthase [J].
Ackerman, SH ;
Tzagoloff, A .
PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY, VOL 80, 2005, 80 :95-133
[2]   Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency [J].
Antonicka, H ;
Leary, SC ;
Agar, JN ;
Horvath, R ;
Kennaway, NG ;
Harding, CO ;
Jaksch, M ;
Shoubridge, EA .
HUMAN MOLECULAR GENETICS, 2003, 12 (20) :2693-2702
[3]   Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy [J].
Antonicka, H ;
Mattman, A ;
Carlson, CG ;
Glerum, DM ;
Hoffbuhr, KC ;
Leary, SC ;
Kennaway, NG ;
Shoubridge, EA .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 72 (01) :101-114
[4]   Yeast mitochondrial F1F0-ATP synthase exists as a dimer:: identification of three dimer-specific subunits [J].
Arnold, I ;
Pfeiffer, K ;
Neupert, W ;
Stuart, RA ;
Schägger, H .
EMBO JOURNAL, 1998, 17 (24) :7170-7178
[5]   Membrane protein degradation by AAA proteases in mitochondria [J].
Arnold, I ;
Langer, T .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2002, 1592 (01) :89-96
[6]   The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane [J].
Arselin, G ;
Giraud, MF ;
Dautant, A ;
Vaillier, J ;
Brèthes, D ;
Coulary-Salin, B ;
Schaeffer, J ;
Velours, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (08) :1875-1884
[7]   Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae [J].
Barrientos, A ;
Zambrano, A ;
Tzagoloff, A .
EMBO JOURNAL, 2004, 23 (17) :3472-3482
[8]   Cytochrome oxidase assembly does not require catalytically active cytochrome c [J].
Barrientos, A ;
Pierre, D ;
Lee, J ;
Tzagoloff, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (11) :8881-8887
[9]   Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh's syndrome [J].
Barrientos, A ;
Korr, D ;
Tzagoloff, A .
EMBO JOURNAL, 2002, 21 (1-2) :43-52
[10]   Regulation of the heme A biosynthetic pathway in Saccharomyces cerevisiae [J].
Barros, MH ;
Tzagoloff, A .
FEBS LETTERS, 2002, 516 (1-3) :119-123