A Conserved Genetic Pathway Determines Inflorescence Architecture in Arabidopsis and Rice

被引:186
|
作者
Liu, Chang [1 ,2 ]
Teo, Zhi Wei Norman [1 ,2 ]
Bi, Yang [1 ,2 ]
Song, Shiyong [1 ,2 ]
Xi, Wanyan [1 ,2 ]
Yang, Xiaobei [1 ,2 ]
Yin, Zhongchao [1 ,2 ]
Yu, Hao [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore
[2] Natl Univ Singapore, Temasek Life Sci Lab, Singapore 117543, Singapore
基金
新加坡国家研究基金会;
关键词
FLORAL MERISTEM IDENTITY; MADS DOMAIN PROTEIN; FLOWERING TIME; PHASE-TRANSITION; TERMINAL FLOWER1; MOLECULAR-BASIS; LEAFY; INTEGRATION; EXPRESSION; APETALA1;
D O I
10.1016/j.devcel.2013.02.013
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The spatiotemporal architecture of inflorescences that bear flowers determines plant reproductive success by affecting fruit set and plant interaction with pollinators. The inflorescence architecture that displays great diversity across flowering plants depends on developmental decisions at inflorescence meristems. Here we report a key conserved genetic pathway determining inflorescence architecture in Arabidopsis thaliana and Oryza sativa (rice). In Arabidopsis, four MADS-box genes, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, SHORT VEGETATIVE PHASE, AGAMOUS-LIKE 24, and SEPALLATA 4 act redundantly and directly to suppress TERMINAL FLOWER1 (TFL1) in emerging floral meristems. This is indispensable for the well-known function of APETALA1 in specifying floral meristenns and is coupled with a conformational change in chromosome looping at the TFL1 locus. Similarly, we demonstrate that the orthologs of these MADS-box genes in rice determine panicle branching by regulating TFL1-like genes. Our findings reveal a conserved regulatory pathway that determines inflorescence architecture in flowering plants.
引用
收藏
页码:612 / 622
页数:11
相关论文
共 50 条
  • [41] Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata
    Berr, Alexandre
    Pecinka, Ales
    Meister, Armin
    Kreth, Gregor
    Fuchs, Joerg
    Blattner, Frank R.
    Lysak, Martin A.
    Schubert, Ingo
    PLANT JOURNAL, 2006, 48 (05): : 771 - 783
  • [42] Genetic control of panicle architecture in rice
    Li, Gangling
    Zhang, Hongliang
    Li, Jinjie
    Zhang, Zhanying
    Li, Zichao
    CROP JOURNAL, 2021, 9 (03): : 590 - 597
  • [43] A G-protein pathway determines grain size in rice
    Sun, Shengyuan
    Wang, Lei
    Mao, Hailiang
    Shao, Lin
    Li, Xianghua
    Xiao, Jinghua
    Ouyang, Yidan
    Zhang, Qifa
    NATURE COMMUNICATIONS, 2018, 9
  • [44] Genetic control of panicle architecture in rice
    Gangling Li
    Hongliang Zhang
    Jinjie Li
    Zhanying Zhang
    Zichao Li
    The Crop Journal, 2021, 9 (03) : 590 - 597
  • [45] Genetic architecture of variation in Arabidopsis thaliana rosettes
    Moron-Garcia, Odin
    Garzon-Martinez, Gina A.
    Pilar Martinez-Martin, M. J.
    Brook, Jason
    Corke, Fiona M. K.
    Doonan, John H.
    Camargo Rodriguez, Anyela, V
    PLOS ONE, 2022, 17 (02):
  • [46] Genetic architecture of mitochondrial editing in Arabidopsis thaliana
    Bentolila, Stephane
    Elliott, Leah E.
    Hanson, Maureen R.
    GENETICS, 2008, 178 (03) : 1693 - 1708
  • [47] A G-protein pathway determines grain size in rice
    Shengyuan Sun
    Lei Wang
    Hailiang Mao
    Lin Shao
    Xianghua Li
    Jinghua Xiao
    Yidan Ouyang
    Qifa Zhang
    Nature Communications, 9
  • [48] Genetic architecture of a selection response in Arabidopsis thaliana
    Ungerer, MC
    Rieseberg, LH
    EVOLUTION, 2003, 57 (11) : 2531 - 2539
  • [49] Genetic architecture of leaf morphogenesis in Arabidopsis thaliana
    Robles, P
    Perez-Perez, JM
    Candela, H
    Quesada, V
    Barrero, JM
    Jover-Gil, S
    Ponce, MR
    Micol, JL
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2001, 45 : S61 - S62
  • [50] Genetic architecture of regulatory variation in Arabidopsis thaliana
    Zhang, Xu
    Cal, Andrew J.
    Borevitz, Justin O.
    GENOME RESEARCH, 2011, 21 (05) : 725 - 733