TADE: Tight Adaptive Differential Evolution

被引:0
作者
Zheng, Weijie [1 ,2 ]
Fu, Haohuan [1 ]
Yang, Guangwen [1 ,2 ]
机构
[1] Tsinghua Univ, Ctr Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, TNList, Beijing, Peoples R China
来源
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV | 2016年 / 9921卷
关键词
Differential evolution; Differential vector; Adaptive; PARAMETERS;
D O I
10.1007/978-3-319-45823-6_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential Evolution (DE) is a simple and effective evolutionary algorithm to solve optimization problems. The existing DE variants always maintain or increase the randomness of the differential vector when considering the trade-off of randomness and certainty among three components of the mutation operator. This paper considers the possibility to achieve a better trade-off and more accurate result by reducing the randomness of the differential vector, and designs a tight adaptive DE variant called TADE. In TADE, the population is divided into a major subpopulation adopting the general "current-to-pbest" strategy and a minor subpopulation utilizing our proposed strategy of sharing the same base vector but reducing the randomness in differential vector. Based on success-history parameter adaptation, TADE designs a simple information exchange scheme to avoid the homogeneity of parameters. The extensive experiments on CEC2014 suite show that TADE achieves better or equivalent performance on at least 76.7% functions comparing with five state-of-the-art DE variants. Additional experiments are conducted to verify the rationality of this tight design.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 13 条
  • [1] [Anonymous], 2013, 201311 ZHENGZH U
  • [2] Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
    Brest, Janez
    Greiner, Saso
    Boskovic, Borko
    Mernik, Marjan
    Zumer, Vijern
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) : 646 - 657
  • [3] Recent advances in differential evolution - An updated survey
    Das, Swagatam
    Mullick, Sankha Subhra
    Suganthan, P. N.
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2016, 27 : 1 - 30
  • [4] Differential Evolution: A Survey of the State-of-the-Art
    Das, Swagatam
    Suganthan, Ponnuthurai Nagaratnam
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) : 4 - 31
  • [5] Differential evolution algorithm with ensemble of parameters and mutation strategies
    Mallipeddi, R.
    Suganthan, P. N.
    Pan, Q. K.
    Tasgetiren, M. F.
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (02) : 1679 - 1696
  • [6] Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization
    Qin, A. K.
    Huang, V. L.
    Suganthan, P. N.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) : 398 - 417
  • [7] Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces
    Storn, R
    Price, K
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (04) : 341 - 359
  • [8] Tanabe R, 2013, 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P71
  • [9] Vesterstrom J, 2004, IEEE C EVOL COMPUTAT, P1980
  • [10] Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters
    Wang, Yong
    Cai, Zixing
    Zhang, Qingfu
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) : 55 - 66