Asymptotic entanglement manipulation of bipartite pure states

被引:14
作者
Bowen, Garry [1 ]
Datta, Nilanjana [2 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Quantum Computat, Cambridge CB3 0WA, England
[2] Univ Cambridge, Dept Pure Math & Math Stat, Stat Lab, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
entanglement; information spectrum; quantum information;
D O I
10.1109/TIT.2008.926377
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Entanglement of pure states of bipartite quantum systems has been shown to have a unique measure in terms of the von Neumann entropy of the reduced states of either of its subsystems. The measure is established under entanglement manipulation of an asymptotically large number of copies of the bipartite pure state. In this paper, two different asymptotic measures of entanglement for arbitrary sequences of bipartite pure states are established. These are shown to coincide only when the sequence is information stable, in terms of the quantum spectral information rates of its corresponding sequence of subsystem states. Additional bounds on the optimal rates of entanglement manipulation protocols in quantum information theory are also presented. These include bounds given by generalizations of the coherent information bounds, Rains' bound, and the relative entropy of entanglement.
引用
收藏
页码:3677 / 3686
页数:10
相关论文
共 26 条
[1]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[5]  
BOWEN G, QUANTUM CODING THEOR
[6]   Beyond i.i.d. in quantum information theory [J].
Bowen, Garry ;
Datta, Nilanjana .
2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, :451-+
[7]  
Cover TM, 2006, Elements of Information Theory
[8]   The uniqueness theorem for entanglement measures [J].
Donald, MJ ;
Horodecki, M ;
Rudolph, O .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4252-4272
[9]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[10]  
Han T. S., 2002, INFORM SPECTRUM METH