ALMOST-SURE SCATTERING FOR THE RADIAL ENERGY-CRITICAL NONLINEAR WAVE EQUATION IN THREE DIMENSIONS

被引:16
作者
Bringmann, Bjoern [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
nonlinear wave equation; probabilistic well-posedness; scattering; spherical symmetry; GLOBAL WELL-POSEDNESS; DATA CAUCHY-THEORY; SCHRODINGER-EQUATION; REGULARITY; MULTIPLIER; EXISTENCE;
D O I
10.2140/apde.2020.13.1011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the radial energy-critical nonlinear wave equation in three dimensions. Our main result proves almost-sure scattering for radial initial data below the energy space. In order to preserve the spherical symmetry of the initial data, we construct a radial randomization that is based on annular Fourier multipliers. We then use a refined radial Strichartz estimate to prove probabilistic Strichartz estimates for the random linear evolution. The main new ingredient in the analysis of the nonlinear evolution is an interaction flux estimate between the linear and nonlinear components of the solution. We then control the energy of the nonlinear component by a triple bootstrap argument involving the energy, the Morawetz term, and the interaction flux estimate.
引用
收藏
页码:1011 / 1050
页数:40
相关论文
共 44 条
[21]   REGULARITY AND ASYMPTOTIC-BEHAVIOR OF THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
ANNALS OF MATHEMATICS, 1990, 132 (03) :485-509
[22]   REGULARITY FOR THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (06) :749-774
[23]   GENERALIZED AND WEIGHTED STRICHARTZ ESTIMATES [J].
Jiang, Jin-Cheng ;
Wang, Chengbo ;
Yu, Xin .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) :1723-1752
[24]   Almost sure scattering for the energy-critical NLS with radial data below [J].
Killip, Rowan ;
Murphy, Jason ;
Visan, Monica .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (01) :51-71
[25]  
Killip R, 2009, J EUR MATH SOC, V11, P1203
[26]   On the optimal local regularity for the Yang-Mills equations in R4+1 [J].
Klainerman, S ;
Tataru, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :93-116
[27]  
Lührmann J, 2016, NEW YORK J MATH, V22, P209
[28]   Random Data Cauchy Theory for Nonlinear Wave Equations of Power-Type on IR3 [J].
Luehrmann, Jonas ;
Mendelson, Dana .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (12) :2262-2283
[29]  
Muscalu C., 2013, Cambridge Studies in Advanced Mathematics, V138
[30]   Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS [J].
Nahmod, Andrea R. ;
Oh, Tadahiro ;
Rey-Bellet, Luc ;
Staffilani, Gigliola .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (04) :1275-1330