Dynamic Dictionary Algorithms for Model Order and Parameter Estimation

被引:32
作者
Austin, Christian D. [1 ]
Ash, Joshua N. [1 ]
Moses, Randolph L. [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
关键词
Compressive sensing; model order estimation; parameter estimation; sparse reconstruction; spectral estimation; superresolution mode; SPARSE SIGNAL RECONSTRUCTION; RESOLUTION; RECOVERY;
D O I
10.1109/TSP.2013.2276428
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present and evaluate dynamic dictionary-based estimation methods for joint model order and parameter estimation. In dictionary-based estimation, a continuous parameter space is discretized, and vector-valued dictionary elements are formed for specific parameter values. A linear combination of a subset of dictionary elements is used to represent the model, where the number of elements used is the estimated model order, and the parameters corresponding to the selected elements are the parameter estimates. In static-based methods, the dictionary is fixed; while in the dynamic methods proposed here, the parameter sampling, and hence the dictionary, adapt to the data. We propose two dynamic dictionary-based estimation algorithms in which the dictionary elements are dynamically adjusted to improve parameter estimation performance. We examine the performance of both static and dynamic algorithms in terms of probability of correct model order selection and the root mean-squared error of parameter estimates. We show that dynamic dictionary methods overcome the problem of estimation bias induced by quantization effects in static dictionary-based estimation, and we demonstrate that dictionary-based estimation methods are capable of parameter estimation performance comparable to the Cramer-Rao lower bound and to traditional ML-based model estimation over a wide range of signal-to-noise ratios.
引用
收藏
页码:5117 / 5130
页数:14
相关论文
共 52 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Fundamental Limitations on the Resolution of Deterministic Signals [J].
Amar, Alon ;
Weiss, Anthony J. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (11) :5309-5318
[3]  
[Anonymous], 2011, CVX MATLAB SOFTWARE
[4]  
Austin C., 2011, P ALG SYNTH AP RAD I
[5]  
Austin C. D., 2012, SPARSE METHODS MODEL
[6]  
Austin CD, 2011, INT CONF ACOUST SPEE, P2852
[7]   On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection [J].
Austin, Christian D. ;
Moses, Randolph L. ;
Ash, Joshua N. ;
Ertin, Emre .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (03) :560-570
[8]   ON THE RELATION BETWEEN SPARSE SAMPLING AND PARAMETRIC ESTIMATION [J].
Austin, Christian D. ;
Ertin, Emre ;
Ash, Joshua N. ;
Moses, Randolph L. .
2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, :387-392
[9]  
Balcan D. C., 2009, P SPARS
[10]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001