Global Wellposedness for the 3D Inhomogeneous Incompressible Navier-Stokes Equations

被引:69
作者
Craig, Walter [1 ]
Huang, Xiangdi [2 ,3 ]
Wang, Yun [4 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Chinese Acad Sci, AMSS, NCMIS, Beijing 100190, Peoples R China
[3] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka, Japan
[4] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Inhomogeneous incompressible fluids; strong solutions; vacuum; VISCOUS FLUIDS; WELL-POSEDNESS; REGULARITY; DENSITY; SOLVABILITY; EXISTENCE; BOUNDARY;
D O I
10.1007/s00021-013-0133-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the three-dimensional Navier-Stokes equations for an incompressible fluid whose density is permitted to be inhomogeneous. We establish a theorem of global existence and uniqueness of strong solutions for initial data with small -norm, which also satisfies a natural compatibility condition. A key point of the theorem is that the initial density need not be strictly positive.
引用
收藏
页码:747 / 758
页数:12
相关论文
共 32 条
[1]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]  
Antontesv S., 1990, BOUND VALUE PROBL
[4]  
Bahouri H, 2011, FOURIER ANALYSIS AND
[5]  
Bergh J., 1976, GRUNDLEHREN DER MATH, V223
[6]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[7]  
BREZIS H, 1980, COMMUN PART DIFF EQ, V5, P773
[8]  
Cannone M, 2004, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 3, P161
[9]   Global regularity for some classes of large solutions to the Navier-Stokes equations [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle ;
Paicu, Marius .
ANNALS OF MATHEMATICS, 2011, 173 (02) :983-1012
[10]   Unique solvability for the density-dependent Navier-Stokes equations [J].
Cho, YG ;
Kim, HS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (04) :465-489