Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer

被引:45
作者
Jin, C. [1 ]
Jiang, Y. [1 ]
Yu, H. [1 ]
Wang, W. [2 ]
Li, B. [1 ]
Chen, C. [3 ]
Yuan, Q. [3 ]
Hu, Y. [4 ,5 ]
Xu, Y. [3 ]
Zhou, Z. [2 ]
Li, G. [4 ,5 ]
Li, R. [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Radiat Oncol, Stanford, CA 94305 USA
[2] Sun Yat Sen Univ, Canc Ctr, Dept Gastr Surg, Guangzhou, Peoples R China
[3] Southern Med Univ, Nanfang Hosp, Dept Med Imaging, Guangzhou, Peoples R China
[4] Southern Med Univ, Nanfang Hosp, Dept Gen Surg, Guangzhou, Peoples R China
[5] Guangdong Prov Key Lab Precis & Minimally Invas M, Guangzhou, Peoples R China
来源
BJS-BRITISH JOURNAL OF SURGERY | 2021年 / 108卷 / 05期
关键词
D O I
10.1002/bjs.11928
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background Lymph node metastasis (LNM) in gastric cancer is a prognostic factor and has implications for the extent of lymph node dissection. The lymphatic drainage of the stomach involves multiple nodal stations with different risks of metastases. The aim of this study was to develop a deep learning system for predicting LNMs in multiple nodal stations based on preoperative CT images in patients with gastric cancer. Methods Preoperative CT images from patients who underwent gastrectomy with lymph node dissection at two medical centres were analysed retrospectively. Using a discovery patient cohort, a system of deep convolutional neural networks was developed to predict pathologically confirmed LNMs at 11 regional nodal stations. To gain understanding about the networks' prediction ability, gradient-weighted class activation mapping for visualization was assessed. The performance was tested in an external cohort of patients by analysis of area under the receiver operating characteristic (ROC) curves (AUC), sensitivity and specificity. Results The discovery and external cohorts included 1172 and 527 patients respectively. The deep learning system demonstrated excellent prediction accuracy in the external validation cohort, with a median AUC of 0 center dot 876 (range 0 center dot 856-0 center dot 893), sensitivity of 0 center dot 743 (0 center dot 551-0 center dot 859) and specificity of 0 center dot 936 (0 center dot 672-0 center dot 966) for 11 nodal stations. The imaging models substantially outperformed clinicopathological variables for predicting LNMs (median AUC 0 center dot 652, range 0 center dot 571-0 center dot 763). By visualizing nearly 19 000 subnetworks, imaging features related to intratumoral heterogeneity and the invasive front were found to be most useful for predicting LNMs. Conclusion A deep learning system for the prediction of LNMs was developed based on preoperative CT images of gastric cancer. The models require further validation but may be used to inform prognosis and guide individualized surgical treatment.
引用
收藏
页码:542 / 549
页数:8
相关论文
共 32 条
[1]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[2]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[3]   Association of the Collagen Signature in the Tumor Microenvironment With Lymph Node Metastasis in Early Gastric Cancer [J].
Chen, Dexin ;
Chen, Gang ;
Jiang, Wei ;
Fu, Meiting ;
Liu, Wenju ;
Sui, Jian ;
Xu, Shuoyu ;
Liu, Zhangyuanzhu ;
Zheng, Xiaoling ;
Chi, Liangjie ;
Lin, Dajia ;
Li, Kai ;
Chen, Weisheng ;
Zuo, Ning ;
Lu, Jianping ;
Chen, Jianxin ;
Li, Guoxin ;
Zhuo, Shuangmu ;
Yan, Jun .
JAMA SURGERY, 2019, 154 (03)
[4]   Evaluation of Lymph Node Metastasis in Advanced Gastric Cancer Using Magnetic Resonance Imaging-Based Radiomics [J].
Chen, Wujie ;
Wang, Siwen ;
Dong, Di ;
Gao, Xuning ;
Zhou, Kefeng ;
Li, Jiaying ;
Lv, Bin ;
Li, Hailin ;
Wu, Xiangjun ;
Fang, Mengjie ;
Tian, Jie ;
Xu, Maosheng .
FRONTIERS IN ONCOLOGY, 2019, 9
[5]   Toward More Accurate Understanding of Lymph Node Metastasis Risk in Early Gastric Cancer [J].
Datta, Jashodeep ;
Strong, Vivian E. .
JAMA SURGERY, 2019, 154 (03)
[6]   Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study [J].
Dong, D. ;
Fang, M. -J. ;
Tang, L. ;
Shan, X. -H. ;
Gao, J. -B. ;
Giganti, F. ;
Wang, R. -P. ;
Chen, X. ;
Wang, X. -X. ;
Palumbo, D. ;
Fu, J. ;
Li, W. -C. ;
Li, J. ;
Zhong, L. -Z. ;
De Cobelli, F. ;
Ji, J. -F. ;
Liu, Z. -Y. ;
Tian, J. .
ANNALS OF ONCOLOGY, 2020, 31 (07) :912-920
[7]   A guide to deep learning in healthcare [J].
Esteva, Andre ;
Robicquet, Alexandre ;
Ramsundar, Bharath ;
Kuleshov, Volodymyr ;
DePristo, Mark ;
Chou, Katherine ;
Cui, Claire ;
Corrado, Greg ;
Thrun, Sebastian ;
Dean, Jeff .
NATURE MEDICINE, 2019, 25 (01) :24-29
[8]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[9]   Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker [J].
Giganti, Francesco ;
Antunes, Sofia ;
Salerno, Annalaura ;
Ambrosi, Alessandro ;
Marra, Paolo ;
Nicoletti, Roberto ;
Orsenigo, Elena ;
Chiari, Damiano ;
Albarello, Luca ;
Staudacher, Carlo ;
Esposito, Antonio ;
Del Maschio, Alessandro ;
De Cobelli, Francesco .
EUROPEAN RADIOLOGY, 2017, 27 (05) :1831-1839
[10]   Deep Learning Algorithms for Detection of Lymph Node Metastases From Breast Cancer Helping Artificial Intelligence Be Seen [J].
Golden, Jeffrey Alan .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2184-2186