On the II-property of subgroups of finite groups

被引:0
作者
Ballester-Bolinches, Adolfo [1 ,2 ]
Jimenez-Seral, Paz [3 ]
Li, Xianhua [4 ]
Li, Yangming [1 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 510310, Guangdong, Peoples R China
[2] Univ Valencia, Dept Algebra, E-46100 Valencia, Spain
[3] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[4] Soochow Univ, Sch Math Sci, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite group; Soluble group; Simple group; Primitive group; II-property;
D O I
10.1007/s00013-015-0808-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a finite group G is said to satisfy the -property in G if every prime dividing also divides the order of , for every G-chief factor L/K of G. The -property is a subgroup embedding property of arithmetical character introduced in Li (J. Algebra 334:321-337, 2011) that gathers common properties of many other well-known subgroup embeddings (most of them of normal type) and allows us to glimpse common behaviors to all of them. The aim of this note is to prove that a finite group G is soluble if and only if in G all maximal subgroups satisfy the -property in G. This is the answer to a question posed by Li (J. Algebra 334:321-337, 2011, Question 5.2).
引用
收藏
页码:301 / 305
页数:5
相关论文
共 6 条