Machine learning based early warning system enables accurate mortality risk prediction for COVID-19

被引:222
作者
Gao, Yue [1 ,2 ]
Cai, Guang-Yao [1 ,2 ]
Fang, Wei [3 ]
Li, Hua-Yi [1 ,2 ]
Wang, Si-Yuan [1 ,2 ]
Chen, Lingxi [4 ]
Yu, Yang [1 ,2 ]
Liu, Dan [1 ,2 ]
Xu, Sen [1 ,2 ]
Cui, Peng-Fei [1 ,2 ]
Zeng, Shao-Qing [1 ,2 ]
Feng, Xin-Xia [5 ]
Yu, Rui-Di [1 ,2 ]
Wang, Ya [1 ,2 ]
Yuan, Yuan [1 ,2 ]
Jiao, Xiao-Fei [1 ,2 ]
Chi, Jian-Hua [1 ,2 ]
Liu, Jia-Hao [1 ,2 ]
Li, Ru-Yuan [1 ,2 ]
Zheng, Xu [1 ,2 ]
Song, Chun-Yan [1 ,2 ]
Jin, Ning [1 ,2 ]
Gong, Wen-Jian [1 ,2 ]
Liu, Xing-Yu [1 ,2 ]
Huang, Lei [6 ]
Tian, Xun [6 ]
Li, Lin [7 ]
Xing, Hui [7 ]
Ma, Ding [1 ,2 ]
Li, Chun-Rui [8 ]
Ye, Fei [9 ]
Gao, Qing-Lei [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Natl Med Ctr Major Publ Hlth Events, Wuhan 430000, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Gynecol & Obstet, Wuhan 430000, Peoples R China
[3] Wuhan Univ, GNSS Res Ctr, Wuhan 430079, Peoples R China
[4] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[5] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Gastroenterol, Wuhan 430000, Peoples R China
[6] Huazhong Univ Sci & Technol, Cent Hosp Wuhan, Tongji Med Coll, Dept Obstet & Gynecol, Wuhan, Peoples R China
[7] Hubei Univ Arts & Sci, Xiangyang Cent Hosp, Dept Obstet & Gynecol, Affiliated Hosp, Xiangyang, Hubei, Peoples R China
[8] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Hematol, Wuhan 430000, Peoples R China
[9] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Neurosurg, Wuhan 430000, Peoples R China
基金
中国国家自然科学基金;
关键词
CLINICAL CHARACTERISTICS; MULTICENTER; CANCER; CHINA;
D O I
10.1038/s41467-020-18684-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soaring cases of coronavirus disease (COVID-19) are pummeling the global health system. Overwhelmed health facilities have endeavored to mitigate the pandemic, but mortality of COVID-19 continues to increase. Here, we present a mortality risk prediction model for COVID-19 (MRPMC) that uses patients' clinical data on admission to stratify patients by mortality risk, which enables prediction of physiological deterioration and death up to 20 days in advance. This ensemble model is built using four machine learning methods including Logistic Regression, Support Vector Machine, Gradient Boosted Decision Tree, and Neural Network. We validate MRPMC in an internal validation cohort and two external validation cohorts, where it achieves an AUC of 0.9621 (95% CI: 0.9464-0.9778), 0.9760 (0.9613-0.9906), and 0.9246 (0.8763-0.9729), respectively. This model enables expeditious and accurate mortality risk stratification of patients with COVID-19, and potentially facilitates more responsive health systems that are conducive to high risk COVID-19 patients. Methods to stratify patients according to mortality risk are essential to allocate limited heath resources during the COVID-19 crisis. Here, using machine learning methods, the authors present a mortality risk prediction model for COVID-19 that uses patients' clinical data on admission to stratify patients by mortality risk.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT [J].
Bai, Harrison X. ;
Wang, Robin ;
Xiong, Zeng ;
Hsieh, Ben ;
Chang, Ken ;
Halsey, Kasey ;
Thi My Linh Tran ;
Choi, Ji Whae ;
Wang, Dong-Cui ;
Shi, Lin-Bo ;
Mei, Ji ;
Jiang, Xiao-Long ;
Pan, Ian ;
Zeng, Qiu-Hua ;
Hu, Ping-Feng ;
Li, Yi-Hui ;
Fu, Fei-Xian ;
Huang, Raymond Y. ;
Sebro, Ronnie ;
Yu, Qi-Zhi ;
Atalay, Michael K. ;
Liao, Wei-Hua .
RADIOLOGY, 2020, 296 (03) :E156-E165
[2]  
Bai X, 2020, PREPRINT, DOI DOI 10.1101/2020.03.20.20037325V2
[3]  
Chen Lingxi, 2020, Zenodo, DOI 10.5281/ZENODO.3991113
[4]   COVID-19 AI systems aim to sniff out coronavirus outbreaks [J].
Cho, Adrian .
SCIENCE, 2020, 368 (6493) :810-811
[5]   UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER [J].
Denaxas, Spiros ;
Gonzalez-Izquierdo, Arturo ;
Direk, Kenan ;
Fitzpatrick, Natalie K. ;
Fatemifar, Ghazaleh ;
Banerjee, Amitava ;
Dobson, Richard J. B. ;
Howe, Laurence J. ;
Kuan, Valerie ;
Lumbers, R. Tom ;
Pasea, Laura ;
Patel, Riyaz S. ;
Shah, Anoop D. ;
Hingorani, Aroon D. ;
Sudlow, Cathie ;
Hemingway, Harry .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2019, 26 (12) :1545-1559
[6]   Identification and Validation of Stromal Immunotype Predict Survival and Benefit from Adjuvant Chemotherapy in Patients with Muscle-Invasive Bladder Cancer [J].
Fu, Hangcheng ;
Zhu, Yu ;
Wang, Yiwei ;
Liu, Zheng ;
Zhang, Junyu ;
Xie, Huyang ;
Fu, Qiang ;
Dai, Bo ;
Ye, Dingwei ;
Xu, Jiejie .
CLINICAL CANCER RESEARCH, 2018, 24 (13) :3069-3078
[7]   A Tool for Early Prediction of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter Study Using the Risk Nomogram in Wuhan and Guangdong, China [J].
Gong, Jiao ;
Ou, Jingyi ;
Qiu, Xueping ;
Jie, Yusheng ;
Chen, Yaqiong ;
Yuan, Lianxiong ;
Cao, Jing ;
Tan, Mingkai ;
Xu, Wenxiong ;
Zheng, Fang ;
Shi, Yaling ;
Hu, Bo .
CLINICAL INFECTIOUS DISEASES, 2020, 71 (15) :833-840
[8]   Learning from Imbalanced Data [J].
He, Haibo ;
Garcia, Edwardo A. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (09) :1263-1284
[9]   Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J].
Huang, Chaolin ;
Wang, Yeming ;
Li, Xingwang ;
Ren, Lili ;
Zhao, Jianping ;
Hu, Yi ;
Zhang, Li ;
Fan, Guohui ;
Xu, Jiuyang ;
Gu, Xiaoying ;
Cheng, Zhenshun ;
Yu, Ting ;
Xia, Jiaan ;
Wei, Yuan ;
Wu, Wenjuan ;
Xie, Xuelei ;
Yin, Wen ;
Li, Hui ;
Liu, Min ;
Xiao, Yan ;
Gao, Hong ;
Guo, Li ;
Xie, Jungang ;
Wang, Guangfa ;
Jiang, Rongmeng ;
Gao, Zhancheng ;
Jin, Qi ;
Wang, Jianwei ;
Cao, Bin .
LANCET, 2020, 395 (10223) :497-506
[10]   COVID-19 and Disruptive Modifications to Cardiac Critical Care Delivery JACC Review Topic of the Week [J].
Katz, Jason N. ;
Sinha, Shashank S. ;
Alviar, Carlos L. ;
Dudzinski, David M. ;
Gage, Ann ;
Brusca, Samuel B. ;
Flanagan, M. Casey ;
Welch, Timothy ;
Geller, Bram J. ;
Miller, P. Elliott ;
Leonardi, Sergio ;
Bohula, Erin A. ;
Price, Susanna ;
Chaudhry, Sunit-Preet ;
Metkus, Thomas S. ;
O'Brien, Connor G. ;
Sionis, Alessandro ;
Barnett, Christopher F. ;
Jentzer, Jacob C. ;
Solomon, Michael A. ;
Morrow, David A. ;
van Diepen, Sean .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 76 (01) :72-84