UNSUPERVISED EMPIRICAL BAYESIAN MULTIPLE TESTING WITH EXTERNAL COVARIATES

被引:38
作者
Ferkingstad, Egil [1 ]
Frigessi, Arnoldo [2 ]
Rue, Havard [3 ]
Thorleifsson, Gudmar [4 ]
Kong, Augustine [4 ]
机构
[1] Univ Oslo, Dept Biostat, N-0317 Oslo, Norway
[2] Norwegian Comp Ctr, Stat Innovat SFI2, N-0314 Oslo, Norway
[3] Norwegian Univ Sci & Technol, Dept Math Sci, N-7194 Trondheim, Norway
[4] Decode Genet, IS-101 Reykjavik, Iceland
关键词
Bioinformatics; multiple hypothesis testing; false discovery rates; data integration; empirical Bayes;
D O I
10.1214/08-AOAS158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In an empirical Bayesian setting, we provide a new multiple testing method, useful when an additional covariate is available, that influences the probability of each null hypothesis being true. We measure the posterior significance of each test conditionally on the covariate and the data, leading to greater power. Using covariate-based prior information in an unsupervised fashion, we produce a list of significant hypotheses which differs in length and order from the list obtained by methods not taking covariate-information into account. Covariate-modulated posterior probabilities of each null hypothesis are estimated using a fast approximate algorithm. The new method is applied to expression quantitative trait loci (eQTL) data.
引用
收藏
页码:714 / 735
页数:22
相关论文
共 38 条
[1]   Adapting to unknown sparsity by controlling the false discovery rate [J].
Abramovich, Felix ;
Benjamini, Yoav ;
Donoho, David L. ;
Johnstone, Iain M. .
ANNALS OF STATISTICS, 2006, 34 (02) :584-653
[2]   A mixture model approach for the analysis of microarray gene expression data [J].
Allison, DB ;
Gadbury, GL ;
Heo, MS ;
Fernández, JR ;
Lee, CK ;
Prolla, TA ;
Weindruch, R .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) :1-20
[3]   Multipoint quantitative-trait linkage analysis in general pedigrees [J].
Almasy, L ;
Blangero, J .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 62 (05) :1198-1211
[4]  
ANDERSON JA, 1982, BIOMETRIKA, V69, P123, DOI 10.1093/biomet/69.1.123
[5]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   Statistical analysis of a telephone call center: A queueing-science perspective [J].
Brown, L ;
Gans, N ;
Mandelbaum, A ;
Sakov, A ;
Shen, HP ;
Zeltyn, S ;
Zhao, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :36-50
[8]   Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics' [J].
Bystrykh, L ;
Weersing, E ;
Dontje, B ;
Sutton, S ;
Pletcher, MT ;
Wiltshire, T ;
Su, AI ;
Vellenga, E ;
Wang, JT ;
Manly, KF ;
Lu, L ;
Chesler, EJ ;
Alberts, R ;
Jansen, RC ;
Williams, RW ;
Cooke, MP ;
de Haan, G .
NATURE GENETICS, 2005, 37 (03) :225-232
[9]  
Diaconis P., 1985, BAYESIAN STATISTICS, V2, P133
[10]   A Bayesian mixture model for differential gene expression [J].
Do, KA ;
Müller, P ;
Tang, F .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2005, 54 :627-644